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PREFACE 

THIS book continues with the plan originated by Lev Davidovich 
Landau and described in the Preface to Volume 1: to present the 
minimum of material in theoretical physics that should be familiar 
to every present-day physicist, working in no matter what branch 
of physics. 

Part I, dealing with non-relativistic quantum theory, follows our 
Quantum Mechanics (Volume 3 of the Course of Theoretical Physics). 
This has been abridged by dropping completely some sections that are 
of interest only to specialists, as well as numerous details of technique 
that are intended for those whose profession lies in theoretical physics. 
This considerable abridgement has naturally meant rewriting a fairly 
large part of the book. I have nevertheless tried to keep unchanged 
the manner and style of the exposition, and in no place to allow a 
simplification by popularising; the only simplification is by the omis-
sion of detail. In Part I, the words "it can be shown" hardly occur: 
the results given are accompanied by their derivations. 

This is, however, less true of Part II. The treatment here is based 
on the Relativistic Quantum Theory by Berestetskii, Pitaevskii and 
myself (Volume 4 of the Course), but only the fundamentals of 
quantum electrodynamics are presented. Here again I have sought to 
proceed in such a way as to show as clearly as possible the physical 
hypotheses and logical structure of the theory; but many applications 
of the theory are mentioned only by way of their results, on account 
of the frequent complexity of the calculations needed to solve specific 
problems in this field. In the choice of materials for Part II I have 
also been guided to some extent by the content of Landau's lectures 
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on quantum electrodynamics at Moscow University in 1959-60; 
my thanks are due to A. S. Kompaneets, Ν. I. Bud'ko and P. S. 
Kondratenko for making available their notes of these lectures. 

The final chapter on Feynman diagrams differs somewhat in style, 
both as regards its greater complexity and in being concerned with 
methods rather than physical results. I felt it necessary, however, to 
provide the reader with at least an idea of the origin and significance 
of the concepts of the diagram technique, which are an indispensable 
part of the equipment of theoretical physics at the present time. 
(I do not seek to describe the use of this technique for the solution 
of practical problems.) This chapter can be omitted, if the reader so 
wishes, without affecting the study of the remainder. 

This book was published in the original Russian almost exactly ten 
years after the fateful day of 7 January 1962, when a road accident 
cut short Lev Davidovich Landau's work as a scientist and a teacher. 
Not one of the readers of the Shorter Course has had the joy of attend-
ing Landau's lectures. I should like to think that in these books it 
will be possible to convey to them something of his spirit as a teacher, 
his striving for clarity, his effort to make simple what was complex 
and so to reveal the laws of nature in their true simplicity and beauty. 

Ε. M. Lifshitz 

PUBLISHER'S NOTE 

As is the general rule in the volumes in the Course of Theoretical 
Physics, references to original papers give simply the author's name 
and the date. 
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NOTATION 

Ψ time-dependent wave function 

ψ wave function without time factor 

Operators are denoted by a circumflex 

Transposed operators are denoted by a tilde ~ 

Hermitian conjugate operators are denoted by a superscript 

fmn = (m\f\ri) matrix elements of the quantity/ 

Η Hamiltonian 

Ε non-relativistic energy 

ωηηι = (En—Em)/h transition frequency 

ε relativistic particle energy, including rest energy 

dq element in configuration space 

dV = dx dy dz element in ordinary space 

Ω normalisation volume 

xi 



xii Notation 

Four-dimensional vector indices are denoted (in Part II) by Greek 
letters λ, μ, v9..which take the values 0 ,1 ,2 ,3 . 

In Part II, relativistic units are used; they are defined in the first 
footnote to §76. 

References to Mechanics and Electrodynamics are to Volume 1 of the 
Shorter Course. 



C H A P T E R 1 

THE BASIC C O N C E P T S 
OF Q U A N T U M M E C H A N I C S 

§1. The uncertainty principle 

When we attempt to apply classical mechanics and electrodynamics 
to explain atomic phenomena, they lead to results which are in obvious 
conflict with experiment. This is very clearly seen from the contradic-
tion obtained on applying ordinary electrodynamics to a model of an 
atom in which the electrons move round the nucleus in classical orbits. 
During such motion, as in any accelerated motion of charges, the 
electrons would have to emit electromagnetic waves continually. 
By this emission, the electrons would lose their energy, and this 
would eventually cause them to fall into the nucleus. Thus, according 
to classical electrodynamics, the atom would be unstable, which does 
not at all agree with reality. 

This marked contradiction between theory and experiment indicates 
that the construction of a theory applicable to atomic phenomena 
—that is, phenomena occurring in particles of very small mass at very 
small distances—demands a fundamental modification of the basic 
physical concepts and laws. 

As a starting-point for an investigation of these modifications, it is 
convenient to take the experimentally observed phenomenon known 
as electron diffraction* It is found that, when a homogeneous beam 

t The phenomenon of electron diffraction was in fact discovered after quantum 
mechanics was invented. In our discussion, however, we shall not adhere to the 
historical sequence of development of the theory, but shall endeavour to con-
struct it in such a way that the connection between the basic principles of quantum 
mechanics and the experimentally observed phenomena is most clearly shown. 

3 



4 The Bask Concepts of Quantum Mechanics §1 

of electrons passes through a crystal, the emergent beam exhibits a 
pattern of alternate maxima and minima of intensity, wholly similar 
to the diffraction pattern observed in the diffraction of electromagnetic 
waves. Thus, under certain conditions, the behaviour of material 
particles—in this case, the electrons—displays features belonging to 
wave processes. 

How markedly this phenomenon contradicts the usual ideas of 
motion is best seen from the following imaginary experiment, an 
idealisation of the experiment of electron diffraction by a crystal. 
Let us imagine a screen impermeable to electrons, in which two slits 
are cut. On observing the passage of a beam of electrons through one 
of the slits, the other being covered, we obtain, on a continuous screen 
placed behind the slit, some pattern of intensity distribution; in the 
same way, by uncovering the second slit and covering the first, we 
obtain another pattern. On observing the passage of the beam through 
both slits, we should expect, on the basis of ordinary classical ideas, 
a pattern which is a simple superposition of the other two: each elec-
tron, moving in its path, passes through one of the slits and has no 
effect on the electrons passing through the other slit. The phenomenon 
of electron diffraction shows, however, that in reality we obtain a 
diffraction pattern which, owing to interference, does not at all corre-
spond to the sum of the patterns given by each slit separately. It is 
clear that this result can in no way be reconciled with the idea that 
electrons move in paths. 

Thus the mechanics which governs atomic phenomena —quantum 
mechanics or wave mechanics—must be based on ideas of motion 
which are fundamentally different from those of classical mechanics. 
In quantum mechanics there is no such concept as the path of a par-
ticle. This forms the content of what is called the uncertainty principle, 
one of the fundamental principles of quantum mechanics, discovered 
by W. Heisenberg in 1927.f 

t It is of interest to note that the complete mathematical formalism of quantum 
mechanics was constructed by W. Heisenberg and E. Schrodinger in 1925-6, be-
fore the discovery of the uncertainty principle, which revealed the physical con-
tent of this formalism. 



§1 The uncertainty principle 5 

In that it rejects the ordinary ideas of classical mechanics, the un-
certainty principle might be said to be negative in content. Of course, 
this principle in itself does not suffice as a basis on which to construct 
a new mechanics of particles. Such a theory must naturally be founded 
on some positive assertions, which we shall discuss below (§2). How-
ever, in order to formulate these assertions, we must first ascertain 
the statement of the problems which confront quantum mechanics. 
To do so, we first examine the special nature of the interrelation be-
tween quantum mechanics and classical mechanics. A more general 
theory can usually be formulated in a logically complete manner, 
independently of a less general theory which forms a limiting case of it. 
Thus, relativistic mechanics can be constructed on the basis of its 
own fundamental principles, without any reference to Newtonian 
mechanics. It is in principle impossible, however, to formulate the 
basic concepts of quantum mechanics without using classical mechan-
ics. The fact that an electront has no definite path means that it has 
also, in itself, no other dynamical characteristics.! Hence it is clear 
that, for a system composed only of quantum objects, it would be 
entirely impossible to construct any logically independent mechanics. 
The possibility of a quantitative description of the motion of an 
electron requires the presence also of physical objects which obey 
classical mechanics to a sufficient degree of accuracy. If an electron 
interacts with such a "classical object", the state of the latter is, gener-
ally speaking, altered. The nature and magnitude of this change 
depend on the state of the electron, and therefore may serve to charac-
terise it quantitatively. 

In this connection the "classical object" is usually called apparatus, 
and its interaction with the electron is spoken of as measurement. 
However, it must be emphasised that we are here not discussing a 

t In this and the following sections we shall, for brevity, speak of "an elec-
tron", meaning in general any object of a quantum nature, i.e. a particle or system 
of particles to which classical mechanics cannot be applied. 

% We refer to quantities which characterise the motion of the electron, and not 
to those, such as the charge and the mass, which relate to it as a particle; these 
are parameters. 

2 



6 The Basic Concepts of Quantum Mechanics §1 

process of measurement in which the physicist-observer takes part. 
By measurement, in quantum mechanics, we understand any process 
of interaction between classical and quantum objects, occurring apart 
from and independently of any observer. The importance of the con-
cept of measurement in quantum mechanics was elucidated by 
N. Bohr. 

We have defined "apparatus" as a physical object which is governed, 
with sufficient accuracy, by classical mechanics. Such, for instance, 
is a body of large enough mass. However, it must not be supposed 
that apparatus is necessarily macroscopic. Under certain conditions, 
the part of apparatus may also be taken by an object which is micro-
scopic, since the idea of "with sufficient accuracy" depends on the 
actual problem proposed. Thus, the motion of an electron in a Wilson 
chamber is observed by means of the cloudy track which it leaves, and 
the thickness of this is large compared with atomic dimensions; when 
the path is determined with such low accuracy, the electron is an 
entirely classical object. 

Thus quantum mechanics occupies a very unusual place among 
physical theories: it contains classical mechanics as a limiting case, 
yet at the same time it requires this limiting case for its own formula-
tion. 

We may now formulate the problem of quantum mechanics. A typ-
ical problem consists in predicting the result of a subsequent measure-
ment from the known results of previous measurements. Moreover, 
we shall see later that, in comparison with classical mechanics, quan-
tum mechanics, generally speaking, restricts the range of values which 
can be taken by various physical quantities (for example, energy): 
that is, the values which can be obtained as a result of measuring the 
quantity concerned. The methods of quantum mechanics must enable 
us to determine these admissible values. 

The measuring process has in quantum mechanics a very important 
property: it always affects the electron subjected to it, and it is in 
principle impossible to make its effect arbitrarily small, for a given 
accuracy of measurement. The more exact the measurement, the strong-
er the effect exerted by it, and only in measurements of very low 
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accuracy can the effect on the measured object be small. This property 
of measurements is logically related to the fact that the dynamical 
characteristics of the electron appear only as a result of the measure-
ment itself. It is clear that, if the effect of the measuring process on 
the object of it could be made arbitrarily small, this would mean 
that the measured quantity has in itself a definite value independent 
of the measurement. 

Among the various kinds of measurement, the measurement of the 
coordinates of the electron plays a fundamental part. Within the limits 
of applicability of quantum mechanics, a measurement of the coordi-
nates of an electron can always be performed t with any desired accu-
racy. 

Let us suppose that, at definite time intervals Δ/, successive measure-
ments of the coordinates of an electron are made. The results will not 
in general lie on a smooth curve. On the contrary, the more accurately 
the measurements are made, the more discontinuous and disorderly 
will be the variation of their results, in accordance with the non-
existence of a path of the electron. A fairly smooth path is obtained 
only if the coordinates of the electron are measured with a low degree 
of accuracy, as for instance from the condensation of vapour droplets 
in a Wilson chamber. 

If now, leaving the accuracy of the measurements unchanged, we 
diminish the intervals Δ/ between measurements, then adjacent meas-
urements, of course, give neighbouring values of the coordinates. 
However, the results of a series of successive measurements, though 
they lie in a small region of space, will be distributed in this region in 
a wholly irregular manner, lying on no smooth curve. 

This circumstance shows that, in quantum mechanics, there is no 
such concept as the velocity of a particle in the classical sense of the 
word, i.e. the limit to which the difference of the coordinates at two 
instants, divided by the interval Δ* between these instants, tends as At 
tends to zero. However, we shall see later that in quantum mechanics, 

t Once again we emphasise that, in speaking of "performing a measurement", 
we refer to the interaction of an electron with a classical "apparatus", which in no 
way presupposes the presence of an external observer. 

2* 



8 The Basic Concepts of Quantum Mechanics § 1 

nevertheless, a reasonable definition of the velocity of a particle at a 
given instant can be constructed, and this velocity passes into the 
classical velocity as we pass to classical mechanics. But whereas in 
classical mechanics a particle has defined coordinates and velocity 
at any given instant, in quantum mechanics the situation is entirely 
different. If, as a result of measurement, the electron is found to have 
definite coordinates, then it has no definite velocity whatever. Con-
versely, if the electron has a definite velocity, it cannot have a definite 
position in space. For the simultaneous existence of the coordinates 
and velocity would mean the existence of a definite path, which the 
electron has not. Thus, in quantum mechanics, the coordinates and 
velocity of an electron are quantities which cannot be simultaneously 
measured exactly, i.e. they cannot simultaneously have definite values. 
We may say that the coordinates and velocity of the electron are 
quantities which do not exist simultaneously. In what follows we shall 
derive the quantitative relation which determines the possibility of an 
inexact measurement of the coordinates and velocity at the same 
instant. 

A complete description of the state of a physical system in classical 
mechanics is effected by stating all its coordinates and velocities at a 
given instant; with these initial data, the equations of motion com-
pletely determine the behaviour of the system at all subsequent instants. 
In quantum mechanics such a description is in principle impossible, 
since the coordinates and the corresponding velocities cannot exist 
simultaneously. Thus a description of the state of a quantum system 
is effected by means of a smaller number of quantities than in classical 
mechanics, i.e. it is less detailed than a classical description. 

A very important consequence follows from this regarding the nature 
of the predictions made in quantum mechanics. Whereas a classical 
description suffices to predict the future motion of a mechanical system 
with complete accuracy, the less detailed description given in quantum 
mechanics evidently cannot be enough to do this. This means that, even 
if an electron is in a state described in the most complete manner pos-
sible in quantum mechanics, its behaviour at subsequent instants is 
still in principle uncertain. Hence quantum mechanics cannot make 
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completely definite predictions concerning the future behaviour of the 
electron. For a given initial state of the electron, a subsequent measure-
ment can give various results. The problem in quantum mechanics 
consists in determining the probability of obtaining various results on 
performing this measurement. It is understood, of course, that in some 
cases the probability of a given result of measurement may be equal 
to unity, i.e. certainty, so that the result of that measurement is unique. 

We shall often find in what follows that by no means every set of 
physical quantities in quantum mechanics can be measured simultane-
ously, i.e. can all have definite values at the same time. We have already 
mentioned one example, namely the velocity and coordinates of an 
electron. An important part is played in quantum mechanics by sets 
of physical quantities having the following property: these quantities 
can be measured simultaneously, but if they simultaneously have 
definite values, no other physical quantity (not being a function of 
these) can have a definite value in that state. We shall speak of such 
sets of physical quantities as complete sets. 

Any description of the state of an electron arises as a result of some 
measurement. We shall now formulate the meaning of a complete 
description of a state in quantum mechanics. Completely described 
states occur as a result of the simultaneous measurement of a complete 
set of physical quantities. From the results of such a measurement we 
can, in particular, determine the probability of various results of any 
subsequent measurement* regardless of the history of the electron prior 
to the first measurement. 

From now on (except in §§7 and 42) we shall understand the states 
of a quantum system to be completely described states. 

§2. The principle of superposition 

The fundamental difference between the physical concepts of motion 
in quantum and classical mechanics naturally implies an equally 
fundamental change in the mathematical formalism of the theory. 
First of all, therefore, we must consider the method of describing the 
state of a quantum system. 
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We shall denote by q the set of coordinates of a quantum system, 
and by dq the product of the differentials of these coordinates. This dq 
is called an element of volume in the configuration space of the system; 
for one particle, dq coincides with an element of volume dVin ordinary 
space. 

In classical mechanics, the state of a system is described by specify-
ing, at a particular instant, all its coordinates q and velocities q. In 
quantum mechanics, as we have seen, such a description is certainly 
impossible. A complete description of the state of the system here 
signifies much less, namely the possibility of predicting the proba-
bilities of particular results when the coordinates (or other quantities) 
of the system are measured. 

The basis of the mathematical formalism of quantum mechanics 
lies in the proposition that a state of a system can be described by a 
definite (in general complex) function Ψ(φ of the coordinates. The 
square of the modulus of this function determines the probability 
distribution of the values of the coordinates: | Ψ | 2 dq is the probability 
that a measurement performed on the system will find the values of the 
coordinates to be in the element dq of configuration space. The func-
tion Ψ is called the wave function of the system.* 

A knowledge of the wave function allows us, in principle, to cal-
culate the probability of the various results of any other measurement 
(not necessarily of the coordinates) also. All these probabilities are 
determined by expressions bilinear in Ψ and Ψ*. The most general 
form of such an expression is 

. Jj!P(i)S'*(iOM,9')dgdi\ (2.1) 

where the function <t>(q9 q') depends on the nature and the result of the 
measurement, and the integration is extended over all configuration 
space. The probability ψ*ψ of various values of the coordinates is 
itself an expression of this type. 

The state of the system, and with it the wave function, in general 
varies with time. In this sense the wave function can be regarded as a 

t It was first introduced into quantum mechanics by Schrodinger in 1926. 
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function of time also. If the wave function is known at some initial 
instant, then, from the very meaning of the concept of complete 
description of a state, it is in principle determined at every succeeding 
instant. The actual dependence of the wave function on time is deter-
mined by equations which will be derived later. 

The sum of the probabilities of all possible values of the coordinates 
of the system must, by definition, be equal to unity. It is therefore 
necessary that the result of integrating | Ψ\2 over all configuration space 
should be equal to unity: 

Jl^Pdi = 1. (2 .2) 

This equation is what is called the normalisation condition for wave 
functions. If the integral of | Ψ | 2 converges, then by choosing an appro-
priate constant coefficient the function Ψ can be, as we say, normalised. 
We shall see later, however, that the integral of | Ψ | 2 may diverge, and 
then Ψ cannot be normalised by the condition (2 .2) . In such cases 
IΨ | 2 does not, of course, determine the absolute values of the proba-
bility of the coordinates, but the ratio of the values of \Ψ\2 at two 
different points of configuration space determines the relative proba-
bility of the corresponding values of the coordinates. 

Since all quantities calculated by means of the wave function, and 
having a direct physical meaning, are of the form (2 .1) , in which Ψ 
appears multiplied by Ψ*9 it is clear that the normalised wave function 
is determined only to within a constant phase factor of the form ei<x 

(where α is any real number). This indeterminacy is in principle irre-
movable; it is, however, unimportant, since it has no effect upon any 
physical results. 

The positive content of quantum mechanics is founded on a series 
of propositions concerning the properties of the wave function. These 
are as follows. 

Suppose that, in a state with wave function Ψλ(4)9 some measure-
ment leads with certainty to a definite result (result 1), while in a state 
with Ψ2(4) leads to result 2 . Then it is asserted that every linear 
combination of Ψ1 and Ψ2, i.e. every function of the form c1W1-hc2W2 

(where c1 and c 2 are constants), describes a state in which that measure-
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ment leads to either result 1 or result 2. Moreover, we can assert that, 
if we know the time dependence of the states, which for the one case 
is given by the function Tx{q, t), and for the other by W2(q, t\ then 
any linear combination also gives a possible dependence of a state 
on time. 

These propositions constitute what is called the principle of super-
position of states. In particular, it follows from this principle that equa-
tions satisfied by wave functions must be linear. 

Let us consider a system composed of two parts, and suppose that 
the state of this system is given in such a way that each of its parts is 
completely described.1" Then we can say that the probabilities of the 
coordinates qt of the first part are independent of the probabilities of 
the coordinates q2 of the second part, and therefore the probability 
distribution for the whole system should be equal to the product of 
the probabilities of its parts. This means that the wave function 
^ 1 2 ( ^ 1 ? #2) °f the system can be represented in the form of a product 
of the wave functions S^Ctfi) a n ^ ^ 2 ( ^ 2 ) °f i t s P a r t s : 

Vii(gi,q*) = Vi(sOV*(a*). (2.3) 

If the two parts do not interact, then this relation between the wave 
function of the system and those of its parts will be maintained at 
future instants also: 

Ψι*(βι, ft, 0 = Ψι(9ι, t) Ψ2^2, t). (2.4) 

§3. Operators 

Let us consider some physical quantity / which characterises the 
state of a quantum system. Strictly, we should speak in the following 
discussion not of one quantity, but of a complete set of them at the 

t This, of course, means that the state of the whole system is completely de-
scribed also. However, we emphasise that the converse statement is by no means 
true: a complete description of the state of the whole system does not in general 
completely determine the states of its individual parts (we shall return to this point 
in §7). 
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same time. However, the discussion is not essentially changed by this, 
and for brevity and simplicity we shall work below in terms of only 
one physical quantity. 

The values which a given physical quantity can take are called in 
quantum mechanics its eigenvalues, and the set of these is referred to as 
the spectrum of eigenvalues of the given quantity. In classical mechanics, 
generally speaking, quantities run through a continuous series of 
values. In quantum mechanics also there are physical quantities (for 
instance, the coordinates) whose eigenvalues occupy a continuous 
range; in such cases we speak of a continuous spectrum of eigenvalues. 
As well as such quantities, however, there exist in quantum mechanics 
others whose eigenvalues form some discrete set; in such cases we 
speak of a discrete spectrum. 

We shall suppose for simplicity that the quantity / considered here 
has a discrete spectrum; the case of a continuous spectrum will be 
discussed in §5. The eigenvalues of the quantity / are denoted by / , , 
where the suffix η takes the values 0, 1, 2, 3 , . . . . We also denote the 
wave function of the system, in the state where the quantity / h a s the 
value fn9 by Ψη. The wave functions Ψη are called the eigenfunctions 
of the given physical quantity / . Each of these functions is supposed 
normalised, so that 

J W d i = 1. (3.1) 

If the system is in some arbitrary state with wave function Ψ, a 
measurement of the quantity / carried out on it will give as a result 
one of the eigenvalues fn. In accordance with the principle of super-
position, we can assert that the wave function Ψ must be a linear 
combination of those eigenfunctions Ψη which correspond to the 
values fn that can be obtained, with probability different from zero, 
when a measurement is made on the system and it is in the state consid-
ered. Hence, in the general case of an arbitrary state, the function Ψ 
can be represented in the form of a series 

Ψ=Σα»Ψη, (3.2) 

where the summation extends over all w, and the an are some constant 
coefficients. 
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Thus we reach the conclusion that any wave function can be, as we 
say, expanded in terms of the eigenfunctions of any physical quantity. 
A set of functions in terms of which such an expansion can be made 
is called a complete set. 

The expansion (3.2) makes it possible to determine the probability 
of finding (by measurement), in a system in a state with wave function 
Ψ, any given value fn of the quantity / . For, according to what was 
said in the previous section, these probabilities must be determined 
by some expressions bilinear in Ψ and Ψ*, and therefore must be 
bilinear in an and an. Furthermore, these expressions must, of course, 
be positive. Finally, the probability of the value fn must become unity 
if the system is in a state with wave function Ψ = Ψη, and must become 
zero if there is no term containing Ψη in the expansion (3.2). The only 
essentially positive quantity satisfying this condition is the square of 
the modulus of the coefficient an. Thus we reach the result that the 
squared modulus \an\

2 of each coefficient in the expansion (3.2) 
determines the probability of the corresponding value/, of the quan-
tity / in the state with wave function Ψ. The sum of the probabilities 
of all possible values fn must be equal to unity; in other words, the 
relation 

Σ Κ Ι 2 = 1 (3.3) 
η 

must hold. 
We shall now introduce the concept of the mean value J of the 

quantity / in the given state. In accordance with the usual definition of 
mean values, we define / as the sum of all the eigenvalues fn of the 
given quantity, each multiplied by the corresponding probability \an\

2. 
Thus 

/ = Σ Μ " » Ι 2 · ( 3 · 4 ) 
η 

We shall write/in the form of an expression which does not contain 
the coefficients a„ in the expansion of the function Ψ, but this function 
itself. Since the products a*an appear in (3.4), it is clear that the required 
expression must be bilinear in Ψ* and Ψ. We introduce a mathemat-
ical operator, which we denote1" by / and define as follows. Let (/ψ) 

t By convention, we shall always denote operators by letters with circumflexes-
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denote the result of the operator / acting on the function Ψ. We define 
/ in such a way that the integral of the product of (/ψ) and the 
complex conjugate function Ψ* is equal to the mean value / : 

f=jW*(fW)dq. (3.5) 

Since the expression (3.5) is bilinear in Ψ* and Ψ, the operator / 
itself must be what is called a linear operator. This term denotes 
operators having the propertiest 

/(Ψ1+Ψ2)=/Ψ1+/ψ2, ?(αΨ) = α/Ψ, 

where Ψχ and Ψ2 are arbitrary functions and α is an arbitrary constant. 
Thus, for every physical quantity in quantum mechanics, there is a 

definite corresponding linear operator. 
If the function Ψ is one of the eigenfunctions Ψη9 the mean value / 

must be equal to the definite value fn that the quantity / has in the 
state concerned: 

For this to be so, we must evidently have 

/Ψη = / Λ , (3.6) 

so that the effect of the operator / on the eigenfunction Ψη is simply to 
multiply it by the corresponding eigenvalue/. 

The eigenvalues of a physical quantity are therefore solutions of the 
equation 

/Ψ=/Ψ9 (3.7) 

where/is a constant, and the eigenvalues are the values of this constant 
for which (3.7) has solutions satisfying the required conditions. As we 
shall see later, the form of the operators for various physical quantities 
can be established from straightforward physical arguments; this pro-

t Where no misunderstanding is possible, we shall usually omit the parentheses 
from the expression ( / Ϊ 7 ) , the operator being understood to act on the expression 
that follows it. 
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perty of the operators then enables us to find the eigenfunctions and 
eigenvalues by solving the equation (3.7). 

Both the eigenvalues of a real physical quantity and its mean value 
in every state must be real. This imposes a restriction on the corre-
sponding operators. Equating the expression (3.5) to its complex 
conjugate, we obtain the relation 

/ Ψ*{}Ψ) dq = j W{f*W*) dq, (3.8) 

where / * denotes the operator which is the complex conjugate of / . 
This relation does not hold in general for an arbitrary linear operator, 
so that it is a restriction on the form of the operator/. For an arbitrary 
operator/ we can find what is called the transposed operator/, defined 
in such a way that 

J0(fW)aq = jW(/0)dq, (3.9) 

where Ψ and Φ are two different functions. If we take, as the function 
Φ, the function Ψ* which is the complex conjugate of Ψ, then a compar-
ison with (3.8) shows that we must have 

/ = / * - (3.10) 

Operators satisfying this condition are said to be Hermitian. Thus the 
operators corresponding, in the mathematical formalism of quantum 
mechanics, to real physical quantities must be Hermitian. 

We can formally consider complex physical quantities also, i.e. 
those whose eigenvalues are complex. Let /be such a quantity. Then we 
can introduce its complex conjugate quantity / * , whose eigenvalues 
are the complex conjugates of those of / . We denote by / + the operator 
corresponding to the quantity /* . It is called the Hermitian conjugate 
of the operator / and, in general, will be different from the complex 
conjugate operator / *: from the definition of the operator / + , the 
mean value of the quantity / * in a state Ψ is 
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We also have 

(/)* = [J W*fWdq]* = J ψ/*ψ* dq = j W*fWdq. 

Equating these two expressions gives 

/ + = A (3.H) 

whence it is clear t h a t / + is in general not the same a s / *. The condition 
(3.10) can now be written 

/ = A (3 .12) 

i.e. the operator of a real physical quantity is the same as its Hermitian 
conjugate; for this reason, Hermitian operators are also called self-
conjugate. 

L e t / a n d ^ be two different eigenvalues of the real physical quan-
tity / and Ψη9 Wm the corresponding eigenfunctions: 

f^n ~ fn Ψ η ? f^m ~ fm Ψm · 

Multiplying both sides of the first of these equations by Ψ*9 and 
both sides of the complex conjugate of the second by Ψη9 and subtract-
ing corresponding terms, we find 

Ψ#ΨΛ-Ψη/*Ψ* = (fn-fm) ΨΛΨΖ. 

We integrate both sides of this equation over q. Since/* = / , by (3.9) 
the integral on the left-hand side of the equation is zero, so that we 
have 

( / » - / » ) J 5 W < J ? = 0 . 

If/« * fm> it follows that 

j ΨηΨ* dq = 0, 

and the different eigenfunctions are orthogonal. Together with the 
normalisation condition for these functions, the result may be written 

J ΨηΨ* dq = 6nm, ( 3 .13 ) 
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where 6nm = 1 for η —m and 6nm = 0 for η ^ m. Thus the eigenfunctions 
Ψη form a complete set of normalised and orthogonal (or, for brevity, 
orthonormal) functions. 

The coefficients an in the expansion (3.2) are now easily determined. 
We need only multiply both sides of (3.2) by Ψ„\ and integrate over q. 
By (3.13), all the terms in the sum are zero except the one with n=m> 

and the result is 
am = $WWmdq. (3.14) 

We have spoken here of only one physical quantity/, whereas, as we 
said at the beginning of this section, we should have spoken of a 
complete set of simultaneously measurable physical quantities. We 
should then have found that to each of these quantities / , g,... there 
corresponds its operator f,g,.... The eigenfunctions Ψη then corre-
spond to states in which all the quantities concerned have definite 
values, i.e. they correspond to definite sets of eigenvalues fn9 gn,..., 
and are simultaneous solutions of the system of equations 

fW=fW, gW = gW,.... 

§4. Addition and multiplication of operators 

Iff and g are the operators corresponding to two physical quantities 
/ andg, the operator/ +g will correspond to the sum f+g. The signifi-
cance of adding two different physical quantities in quantum mechan-
ics depends considerably on whether the quantities can be measured 
simultaneously. If f and g are simultaneously measurable, the operators 
f and g have common eigenfunctions, which are also eigenfunctions 
of the operator/ +g , and the eigenvalues of the latter are equal to the 
the sums fn+gn. 

If, however, the quantities/and g cannot simultaneously take definite 
values, their sum f+g has a more restricted significance. We can 
assert only that its mean value in an arbitrary state is equal to the 
sum of the mean values of the separate quantities: 

/+*=/+& (4.1) 
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The eigenvalues and eigenfunctions of the operator / +g will not in 
general bear any relation to those of / and g. If / and g are Hermitian 
operators, then obviously / +g is also Hermitian, and its eigenvalues 
are real and equal to those of the quantity f+g defined in this way. 

Next, let / and g once more be quantities that can be measured 
simultaneously. Besides their sum, we can also introduce the concept 
of their product as being a quantity whose eigenvalues are equal to the 
products of those of the quantities / a n d g. It is easy to see that, to this 
quantity, there corresponds an operator whose effect consists of the 
successive action on the function of first one and then the other opera-
tor. Such an operator is represented mathematically by the product of 
the operators / and g. For, if Ψη are the eigenfunctions common to the 
operators/ and g, we have 

fSFn = ΜΨη) = fgnVn = gnf^n = gnfrVn (4.2) 

(the symbol / g denotes an operator whose effect on a function Ψ 
consists of the successive action first of the operator g on the function 
Ψ and then of the operator / on the function gW). We could equally 
well take the operator gf instead of / g , the former differing from the 
latter in the order of its factors. It is obvious that the result of the 
action of either of these operators on the functions Ψη will be the 
same. Since, however, every wave function Ψ can be represented as a 
linear combination of the functions Ψη9 it follows that the result of the 
action of the operators / g and gf on an arbitrary function will also 
be the same. This fact can be written in the form of the symbolic 
equa t i on fg=gf or 

fg-gf=0. (4.3) 

Two such operators / and g are said to commute with each other.1" 
Thus we arrive at the important result: if two quantities / a n d g can 
simultaneously take definite values, then their operators commute 
with each other. 

The converse theorem can also be proved: if the operators / and g 

t The d i f f e r e n c e i s called the commutator of the two operators. 
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commute, then all their eigenfunctions can be taken common to 
both; physically, this means that the corresponding physical quantities 
can be measured simultaneously. Thus the commutability of the oper-
ators is a necessary and sufficient condition for the physical quantities 
to be simultaneously measurable. 

If the quantities / and g cannot be measured simultaneously, the 
concept of their product cannot be defined in the above manner. 
This appears in the fact that the operator fg is not Hermitian in this 
case, and hence cannot correspond to any physical quantity. For, by 
the definition of the transpose of an operator we can write 

Here the operator / acts only on the function Ψ, and the operator g 
on Φ. Again using the definition of the transpose of an operator, we 
can write 

$ Wfg0 dq = J ( / V ) (g0) dq=$ 0§fWdq. 

Thus we obtain an integral in which the functions Ψ and Φ have 
changed places as compared with the original one. In other words, 

the operator §f is the transpose of fg, and we can write 

fg = U (4.4) 

i.e. the transpose of the product fg is the product of the transposes of 
the factors written in the opposite order. Taking the complex conju-
gate of both sides of equation (4.4), we have 

(fg)+=g+f+. (4.5) 

If each of the operators / and g is Hermitian, then (fg)* =gf 

It follows from this that the operator fg is Hermitian if and only if 

the factors / and g commute. 
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§5. The continuous spectrum 

All the relations given in §§3 and 4, describing the properties of 
the eigenfunctions of a discrete spectrum, can be generalised without 
difficulty to the case of a continuous spectrum of eigenvalues. We shall 
enumerate the results here without repeating the corresponding deri-
vations. 

Let / b e a physical quantity having a continuous spectrum. We shall 
denote its eigenvalues by the same letter / simply, without suffix, and 
the corresponding eigenfunctions by Wf. Just as an arbitrary wave 
function Ψ can be expanded in a series (3.2) of eigenfunctions of a 
quantity having a discrete spectrum, it can also be expanded (this time 
as an integral) in terms of the complete set of eigenfunctions of a 
quantity with a continuous spectrum. This expansion has the form 

Ψ(ς) = $α/ΨΜ<¥· (5-1) 

The expansion coefficients are 

0 , = J y ( i ) ! P / ( i ) d f . (5.2) 

Since / can take a continuous range of values, we must now speak 
not of the probability of a particular value but of the probability of a 
value in an infinitesimal range between / and / + d / . This probability 
is I 12 d / just as | an |

2 gives the probability of the eigenvalue/, for a 
discrete spectrum. Since the sum of the probabilities of all possible 
values of/ must be equal to unity, we have 

j > / | 2 d / = l (5.3) 

(similarly to the relation (3.3) for a discrete spectrum). 
The above formulae presuppose a particular normalisation of the 

eigenfunctions Wf: they must be normalised according to 

fyWaq=ld(f'-f), (5.4) 

the function on the right being a (5-function, whose definition and 
properties have been given in Mechanics and Electrodynamics, §54.f 

t The (5-function was first used in theoretical physics by Dirac. 

3 
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For, if (5.1) is substituted in (5.2), we get 

af=laf{$WfW?aq)df', 

which must be satisfied identically. The condition (5.4) ensures that 
this is so, since the properties of the (5-function give 

jard(f-f)dr = af. 

The normalisation rule (5.4) replaces the condition (3.13) for the 
discrete spectrum. We see that the functions?^ and Wf, with/?* / ' are, 
as before, orthogonal. The integrals of the squares \Wf\

2 of the eigen-
functions of a continuous spectrum are, however, infinite. The origin 
and significance of this divergence will be discussed at the end of §10. 

Substitution of (5.2) in (5.1) gives 

Ψ(Λ) = J nq') (J W ) SWi) d/) dq', 

whence it follows that1" 

J W ) ΨΛ4) V = «(ί-Λ- (5.5) 

Comparing the pair of formulae (5.1), (5.4) with the pair (5.2), 
(5.5), we see that, on the one hand, the functions Wf{q) provide an 
expansion of an arbitrary function W(q) with expansion coefficients af 

and, on the other hand, formula (5.2) represents an entirely analogous 
expansion of the function af = a(f) in terms of the functions Wf{q), 
while the W{q) play the part of expansion coefficients. The function 
a{f\ like W{q\ completely determines the state of the system; it is 
called a wave function in the f representation (while the function Ψ(ς) 
is called a wave function in the coordinate or q representation). 
Just as \W(q)\2 determines the probability for the system to have 
coordinates lying in a given interval dq, so | a(f) | 2 determines the prob-
ability for the values of the quantity / to lie in a given interval d/. 

* There is, of course, an analogous relation for a discrete spectrum: 

Σ Wi(qf) Ψη(0) = % - *0 . (5.5a) 
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On the one hand, the functions Wf(q) are the eigenfunctions of the 
quantity / i n the q representation; on the other hand, their complex 
conjugates are the eigenfunctions of the coordinate q in the / repre-
sentation. 

There are also physical quantities which in one range of values 
have a discrete spectrum, and in another a continuous spectrum. 
For the eigenfunctions of such a quantity all the relations derived 
in this and the previous sections are, of course, true. It need only be 
noted that the complete set of functions is formed by combining the 
eigenfunctions of both spectra. Hence the expansion of an arbitrary 
wave function in terms of the eigenfunctions of such a quantity has the 
form 

W(q) = Σ αηΨΜ+ j afW,(g) df, (5.6) 
η 

where the sum is taken over the discrete spectrum and the integral 
over the whole continuous spectrum. 

The coordinate q itself is an example of a quantity having a contin-
uous spectrum. It is easy to see that the operator corresponding 
to it is simply multiplication by q. For, since the probability of the 
various values of the coordinate is determined by the square \ W(q)\\ 
the mean value of the coordinate is 

q = $q\W\*dq = ]W*qWdq. 

Comparison of this expression with the definition (3.5) of the operator 

/ shows that1" 

q = q- (5.7) 

The eigenfunctions of this operator must be determined, according 
to the usual rule, by the equation qWqo = q^Fq^ where q0 temporarily 
denotes the actual values of the coordinate as distinct from the variable 
q. Since this equation can be satisfied either by Ψαο = 0 or by q = q0, it 
is clear that the wave functions which satisfy the normalisation con-
dition are 

VaQ = tig-go). (5.8) 

t In future we shall always, for simplicity, write operators which amount to 
multiplication by some quantity in the form of that quantity itself. 

3* 
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§6. The passage to the limiting case of classical mechanics 

Quantum mechanics contains classical mechanics in the form of a 
certain limiting case. The question arises as to how this passage to the 
limit is made. 

In quantum mechanics an electron is described by a wave function 
which determines the various values of its coordinates; of this function 
we so far know only that it is the solution of a certain linear partial 
differential equation. In classical mechanics, on the other hand, an 
electron is regarded as a material particle, moving in a path which is 
completely determined by the equations of motion. There is an inter-
relation, somewhat similar to that between quantum and classical 
mechanics, in electrodynamics between wave optics and geometrical 
optics. In wave optics, the electromagnetic waves are described by the 
electric and magnetic field vectors, which satisfy a definite system 
of linear differential equations, namely Maxwell's equations. In geo-
metrical optics, however, the propagation of light along definite 
paths, or rays, is considered. Such an analogy enables us to see that 
the passage from quantum mechanics to the limit of classical mechanics 
occurs similarly to the passage from wave optics to geometrical 
optics. 

Let us recall how this latter transition is made mathematically 
(see Mechanics and Electrodynamics, §74). Let u be any of the field 
components in the electromagnetic wave. It can be written in the 
form u = ae'* (with a and φ real), where a is called the amplitude and φ 
the phase of the wave (called in geometrical optics the eikonal). The 
limiting case of geometrical optics corresponds to small wavelengths; 
this is expressed mathematically by saying that φ varies by a large 
amount over short distances; this means, in particular, that it can 
be supposed large in absolute value. 

Similarly, we start from the hypothesis that, to the limiting case 
of classical mechanics, there correspond in quantum mechanics wave 
functions of the form Ψ = αέφ, where α is a slowly varying function 
and φ takes large values. As is well known, the path of a particle can 
be determined in mechanics by means of the variational principle, 
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according to which what is called the action S of a mechanical system 
must take its least possible value (the principle of least action). In geo-
metrical optics the path of the rays is determined by what is called 
Fermafs principle, according to which the optical path length of the 
ray, i.e. the difference between its phases at the beginning and end of 
the path, must take its least (or greatest) possible value. 

On the basis of this analogy, we can assert that the phase of the wave 
function, in the limiting (classical) case, must be proportional to the 
mechanical action S of the physical system considered, i.e. we must 
have S = constant Χ φ. The constant of proportionality is called 
Planck's constant* and is denoted by h. It has the dimensions of action 
(since φ is dimensionless) and has the value 

h = 1.054XlO- 2 7ergsec. 

Thus, the wave function of an "almost classical" (or, as we say, 
quasi-classical) physical system has the form 

Ψ = aeiSih. (6.1) 

Planck's constant h plays a fundamental part in all quantum phenom-
ena. Its relative value (compared with other quantities of the same 
dimensions) determines the "extent of quantisation" of a given 
physical system. The transition from quantum mechanics to classical 
mechanics, corresponding to large phase, can be formally described 
as a passage to the limit h 0 (just as the transition from wave optics 
to geometrical optics corresponds to a passage to the limit of zero 
wavelength, λ — 0). 

We have ascertained the limiting form of the wave function, but the 
question still remains how it is related to classical motion in a path. 
In general, the motion described by the wave function does not tend 
to motion in a definite path. Its connection with classical motion is 
that, if at some initial instant the wave function, and with it the prob-
ability distribution of the coordinates, is given, then at subsequent 

t It was introduced into physics by M. Planck in 1900. The constant h, which we 
use everywhere in this book, is, strictly speaking, Planck's constant divided by 
2π; this is Dirac's notation. 
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instants this distribution will change according to the laws of classical 
mechanics (for a more detailed discussion of this, see §26). 

In order to obtain motion in a definite path, we must start from a 
wave function of a particular form, which is perceptibly different from 
zero only in a very small region of space (what is called a wave packet); 
the dimensions of this region must tend to zero with h. Then we can 
say that, in the quasi-classical case, the wave packet will move in space 
along a classical path of a particle. 

Finally, quantum-mechanical operators must reduce, in the limit, 
simply to multiplication by the corresponding physical quantity. 

§7. The density matrix 

The description of a system by means of a wave function is the most 
complete description possible in quantum mechanics, in the sense 
indicated at the end of §1. 

States that do not allow such a description are encountered if we 
consider a system that is part of a larger closed system. 

We suppose that the closed system as a whole is in some state 
described by the wave function W(q, x)9 where χ denotes the set of 
coordinates of the system considered, and q the remaining coordinates 
of the closed system. This function is general does not fall into a 
product of functions of χ and of q alone, so that the system does not 
have its own wave function. 

Let / be some physical quantity pertaining to the system considered. 
Its operator therefore acts only on the coordinates x9 and not on q. 
The mean value of this quantity in the state considered is 

/ = f j ^ % , *)/>(<?, x)d?dx. (7.D 

We introduce the function ρ(χ\ χ) defined by 

ρ(χ', x) = j W*(q, x') W{q, x) dq9 (7.2) 

where the integration is extended only over the coordinates q; this 
function is called the density matrix of the system. When χ = x\ we 
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have the function 

Q(x,x) = J |^*(<7 ,*)l 2 d<7, (7 .3 ) 

which evidently determines the probability distribution for the coordi-
nates of the system. 

Using the density matrix, the mean value/can be written in the form 

f=$[fQ(x\x)]x>=xdx. (7.4) 

Here / acts only on the variables χ in the function ρ(χ\ χ); after calcu-
lating the result of its action, we put x' — x. We see that, if we know 
the density matrix, we can calculate the mean value of any quantity 
characterising the system. It follows from this that, by means of 
ρ(χ', χ), we can also determine the probabilities of various values 
of the physical quantities in the system. Thus we reach the conclusion 
that the state of a system which does not have a wave function can 
be described by means of a density matrix.1" This does not contain the 
coordinates q which do not belong to the system concerned, though, 
of course, it depends essentially on the state of the closed system as a 
whole. 

The description by means of the density matrix is the most general 
form of quantum-mechanical description of the system. The descrip-
tion by means of the wave function, on the other hand, is a particular 
case of this, corresponding to a density matrix of the form q(x\ x) = 
Ψ*(χ')Ψ(χ). The following important difference exists between this 
particular case and the general one. For a state having a wave function 
(sometimes called a pure state) there is always a complete set of mea-
suring processes such that they lead with certainty to definite results. 
For states having only a density matrix (called mixed states), on the 
other hand, there is no complete set of measuring processes whose 
result can be uniquely predicted. 

t The quantum-mechanical description of such states was introduced inde-
pendently by L. D. Landau and F. Bloch in 1927. 
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CONSERVATION LAWS 
IN Q U A N T U M M E C H A N I C S 

§8. The Hamiltonian operator 

The wave function Ψ completely determines the state of a physical 
system in quantum mechanics. This means that, if this function is given 
at some instant, not only are all the properties of the system at that 
instant described, but its behaviour at all subsequent instants is 
determined (only, of course, to the degree of completeness which is 
generally admissible in quantum mechanics). The mathematical ex-
pression of this fact is that the value of the derivative dW/dt of the 
wave function with respect to time at any given instant must be deter-
mined by the value of the function itself at that instant, and, by the 
principle of superposition, the relation between them must be linear. 
In the most general form we can write 

ihdW/dt = AW9 (8.1) 

where Η is some linear operator; the reason for the factor ih will be 
explained later. 

Since the integral j Ψ*Ψ dq is a constant independent of time, we 
have 

Substituting here from (8.1) and using in the second integral the 
definition of the transpose of an operator, we can write (omitting 

28 
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the slowly varying amplitude a need not be differentiated. Comparing 
this equation with the definition (8.1), we see that, in the limiting 
case, the operator Η reduces to simply multiplying by —dS/dt. This 
means that —dS/dt is the physical quantity into which the Hermitian 
operator Η passes. 

The derivative — dS/dt is just Hamilton's function Η for a mechani-
cal system. Thus the operator Η is what corresponds in quantum 
mechanics to Hamilton's function; this operator is called the Hamil-
tonian operator or, more briefly, the Hamiltonian of the system. 
If the form of the Hamiltonian is known, equation (8.1) determines 
the wave function of the physical system concerned. This fundamental 
equation of quantum mechanics is called the wave equation. 

§9. The differentiation of operators with respect to time 

The concept of the derivative of a physical quantity with respect to 
time cannot be defined in quantum mechanics in the same way as in 
classical mechanics. For the definition of the derivative in classical 
mechanics involves the consideration of the values of the quantity at 
two neighbouring but distinct instants of time. In quantum mechanics, 
however, a quantity which at some instant is measured does not in 
general have definite values at subsequent instants; this was discussed 
in detail in§l . 

the common factor l/iti) 

J Ψ*ΗΨdq-$ ΨΗ*Ψ* dq = J W*HWdq-$ W*H*Wdq 

= \w*(H-H+)Wdq=0. 

Since this equation must hold for an arbitrary function Ψ, it follows 
that we must have identically Η = H+; the operator Η is therefore 
Hermitian. Let us find the classical quantity to which the operator Η 
corresponds. To do this, we use the limiting expression (6.1) for the 
wave function and write 
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Here df/dt is the operator obtained by differentiating the operator/ 
with respect to t ime; /may depend on the time as a parameter. Sub-
stituting for ΒΨ/dt, dW*/dt their expressions according to (8.1), we 
obtain 

Since the operator β is Hermitian, we have 

thus 

Since, on the other hand, we must have, by the definition of mean 

values,/ = j Ψ*/ψ dq9 it is seen that the expression in parentheses 

under the integral is the required operator / : 

(9.2) 

Hence the idea of the derivative with respect to time must be differ-
ently defined in quantum mechanics. It is natural to define the deriv-
ative f of a quantity / as the quantity whose mean value is equal to 
the derivative, with respect to time, of the mean value / . Thus we 
have by definition 

/ = / (9.1) 

Starting from this definition, it is easy to obtain an expression for 

the quantum-mechanical operator / corresponding to the quantity / . 
We can write 



§10 Stationary states 31 

§10. Stationary states 

If the system is closed or is in a constant external field, its Hamil-
tonian cannot contain the time explicitly. This follows from the fact 
that all times are equivalent so far as the given physical system is 
concerned. Since, on the other hand, any operator of course commutes 
with itself, we reach the conclusion that Hamilton's function is con-
served for systems which are not in a varying external field. As is 
well known, a Hamilton's function which is conserved is called the 
energy (see Mechanics and Electrodynamics, §6). The law of conserva-
tion of energy in quantum mechanics signifies that, if in a given state 
the energy has a definite value, this value remains constant in time. 

States in which the energy has definite values are called stationary 
states of a system. They are described by wave functions Ψη which are 
the eigenfunctions of the Hamiltonian operator, i.e. which satisfy the 
equation βψη = ΕηΨη, where En are the eigenvalues of the energy. 
Correspondingly, the wave equation (8.1) for the function Ψη, 

^ΰΨηΙ?Η = ΗΨη=ΕηΨη, 

can be integrated at once with respect to time and gives 

Ψη = e-«l*En<yn(q), (10.1) 

If the operator/does not depend explicitly on time,/reduces, apart 

from a constant factor, to the commutator of the operator / and the 

Hamiltonian. 
A very important class of physical quantities is formed by those 

whose operators do not depend explicitly on time, and also commute 

with the Hamiltonian, so that / = 0. Such quantities are said to be 

conserved. For these, / = / = 0, that is, / is constant. In other words, 
the mean value of the quantity remains constant in time. We can also 
assert that, if in a given state the quantity / h a s a definite value (i.e. 
the wave function is an eigenfunction of the operator / ) , then it will 
have a definite value (the same one) at subsequent instants also. 
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where ψη is a function of the coordinates only. This determines the 
relation between the wave functions of stationary states and the time. 

We shall denote by the small letter ψ the wave functions of stationary 
states without the time factor. These functions, and also the eigen-
values of the energy, are determined by the equation 

Ηψ = Εφ. (10.2) 

The stationary state with the smallest possible value of the energy 
is called the normal or ground state of the system. 

The expansion of an arbitrary wave function Ψ in terms of the 
wave functions of stationary states has the form 

Ψ = Σ«ηβ-βΜΕ*'ψΜ· (10.3) 
η 

The squared moduli | α Λ |
2 of the expansion coefficients, as usual, deter-

mine the probabilities of various values of the energy of the system. 
The probability distribution for the coordinates in a stationary state 

is determined by the squared modulus \Ψη\
2 = \ψη\

2', it is independent 
of time. The same is true of the mean values 

f=jWtt*fWndq=fW*nfy>ndq 

of any physical quantity / (whose operator does not depend explicitly 
on the time). 

As has been said, the operator of any quantity that is conserved 
commutes with the Hamiltonian. This means that any physical 
quantity that is conserved can be measured simultaneously with 
the energy. 

Among the various stationary states, there may be some which cor-
respond to the same value of the energy (or, as we say, energy level of 
the system), but differ in the values of some other physical quantities. 
Such energy levels, to which several different stationary states corre-
spond, are said to be degenerate. Physically, the possibility that dege-
nerate levels can exist is related to the fact that the energy does not in 
general form by itself a complete set of physical quantities. 

In particular, if there are two conserved physical quantities / and 
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g whose operators do not commute, then the energy levels of the system 
are in general degenerate. For, let ψ be the wave function of a station-
ary state in which, besides the energy, the quantity / also has a definite 
value. Then we can say that the function g\p does not coincide (apart 
from a constant factor) with ψ; if it did, this would mean that the 
quantity g also had a definite value, which is impossible, since / and g 
cannot be measured simultaneously. On the other hand, the function 
g\p is an eigenfunction of the Hamiltonian, corresponding to the same 
value Ε of the energy as ψ: 

H(gy) = έίϊψ = E(gip). 

Thus we see that the energy Ε corresponds to more than one eigen-
function, i.e. the energy level is degenerate. 

It is clear that any linear combination of wave functions corre-
sponding to the same degenerate energy level is also an eigenfunction 
for that value of the energy. In other words, the choice of eigenfunc-
tions of a degenerate energy level is not unique. Arbitrarily selected 
eigenfunctions of a degenerate energy level are not, in general, ortho-
gonal. By a proper choice of linear combinations of them, however, 
we can always obtain a set of orthogonal (and normalised) eigen-
functions. 

The spectrum of eigenvalues of the energy may be either discrete or 
continuous. A stationary state of a discrete spectrum always corre-
sponds to a finite motion of the system, i.e. one in which neither the 
system nor any part of it moves off to infinity. For, with eigenfunc-
tions of a discrete spectrum, the integral J | Ψ |2 dq, taken overall space, 
is finite. This certainly means that the squared modulus | Ψ\2 decreases 
quite rapidly, becoming zero at infinity. In other words, the prob-
ability of infinite values of the coordinates is zero; that is, the system 
executes a finite motion, and is said to be in a bound state. 

For wave functions of a continuous spectrum, the integral J | Ψ\2 dq 
diverges. Here the squared modulus |?F| 2 of the wave function does 
not directly determine the probability of the various values of the 
coordinates, and must be regarded only as a quantity proportional to 
this probability. The divergence of the integral $ | W\2dq is always due 
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to the fact that \ Ψ\2 does not become zero at infinity (or becomes zero 
insufficiently rapidly). Hence we can say that the integral j\W\2dq9 

taken over the region of space outside any arbitrarily large but finite 
closed surface, will always diverge. This means that, in the state 
considered, the system (or some part of it) is at infinity. Thus the 
stationary states of a continuous spectrum correspond to an infinite 
motion of the system. 

§11. Matrices of physical quantities 

We shall suppose for convenience that the system considered has a 
discrete energy spectrum; all the relations obtained below can be 
generalised at once to the case of a continuous spectrum. Let Ψ = 
ΣαηΨη be the expansion of an arbitrary wave function in terms of the 
wave functions of the stationary states. If we substitute this expansion 
in the definition (3.5) of the mean value of some quantity / , we obtain 

/ = Z Z " « W U 0 , (11-1) 
η m 

where fnJt) denotes the integral 

fnm = ^n*fTmdq. (11.2) 

The set of quan t i t i e s / ^ ) with all possible η and m is called the matrix 
of the quantity / , and each of the f„Jf) * s called the matrix element 
corresponding to the transition from state m to state w.1" 

Another notation used for the matrix elements is 

(n\f\m)9 (Π.3) 

which is especially convenient when each of the suffixes η and m has 
to be written as a group of letters. The symbol (11.3) is sometimes 
regarded as being made up of / and the symbols | m) and (n\9 which 
denote the initial and final states respectively; this is Dirac's notation. 

t The matrix representation of physical quantities was introduced by Heisen-
berg in 1925, before Schrodinger's discovery of the wave equation. "Matrix me-
chanics" was later developed by M. Born, W. Heisenberg and P. Jordan. 



Matrices of physical quantities 35 

The dependence of the matrix elements fnJf) on time is determined 
(if the operator/does not contain the time explicitly) by the dependence 
of the functions Ψη on time. Substituting for them the expressions 
(10.1), we find that 

fnm{f) = fnm*°"** (11.4) 
where 

ωηηι ={En-Em)lh (11.5) 

is what is called the transition frequency between the states m and w, 
and the quantities 

fnm = J WnfWm <ty (11-6) 

form the matrix of the quantity / which is independent of time, and 
which is commonly used. 

The matrix elements of the derivative / are obtained by differentiat-
ing the matrix elements of the quantity / with respect to time; this 

follows directly from the fact that the mean value / is 

η m 

From (11.4) we thus have for the matrix elements of / 

fnJf)^tamfnJf) (11.7) 

or (cancelling the time factor eito»mt from both sides) for the matrix 
elements independent of time 

(f)nm = iVnmfnm = (β/Κ) (En-Em)fnm . (11.8) 

To simplify the notation in the formulae, we shall derive all our 
relations below for the matrix elements independent of time; exactly 
similar relations hold for the matrices which depend on the time. 

For the matrix elements of the complex conjugate/* of the quantity 
/ we obtain, taking into account the definition of the Hermitian 
conjugate operator, 

(f*)nm = J ψηβψηι dq = J ψη/*ψηι dq = J ψ^ψη dq 
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or 

For real physical quantities, which are the only ones we usually con-
sider, we consequently have 

fnm =fL (11.10) 

(f*n stands for (fmnf). Such matrices, like the corresponding opera-
tors, are said to be Hermitian. 

Matrix elements with η = m are called diagonal elements. These are 
independent of time, and (11.10) shows that they are real. The element 
fnn is the mean value of the quantity/in the state ψη. 

It is not difficult to obtain the multiplication rule for matrices. 
To do so, we first observe that the formula 

/ψη = Σ/ηιηψη ( H - H ) 
m 

holds. This is simply the expansion of the function / ψ η in terms of the 
functions y m , the coefficients being determined in accordance with the 
general formula (3.14). Remembering this formula, let us write down 
the result of the product of two operators acting on the function ψη: 

/§ψη = / Σ gktWk = ^SknfWk = Σ gknfmk^m • 
k k k, m 

Since, on the other hand, we must have 

ίέψη = £ ( / £ ) m ^ m , 
m 

we arrive at the result that the matrix elements of the p r o d u c t ^ are 
determined by the formula 

(fg)mn = Σ/nkgkn . (11.12) 
k 

This rule is the same as that used in mathematics for the multiplication 
of matrices: the rows of the first matrix in the product are multiplied 
by the columns of the second. 
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If the matrix is given, then so is the operator itself. In particular, if 
the matrix is given, it is in principle possible to determine the eigen-
values of the physical quantity concerned and the corresponding 
eigenfunctions. 

We shall now consider the values of all quantities at some definite 
instant, and expand an arbitrary wave function Ψ (at that instant) 
in terms of the eigenfunctions of the Hamiltonian operator H9 i.e. of 
the wave functions ipm of the stationary states (these wave functions 
are independent of time): 

Ψ = Σ € ^ 9 (Π.13) 
m 

where the expansion coefficients are denoted by cm. We substitute 
this expansion in the equation fW = fW which determines the eigen-
values and eigenfunctions of the quantity / . We have 

Σ Cm(fym) = / Σ €™Ψ™ · 
m m 

We multiply both sides of this equation by ψ* and integrate over q. 
Each of the integrals { y>lfipm dq on the left-hand side of the equation 
is the corresponding matrix element f n m . On the right-hand side, all 
the integrals J ip*ipm dq with m τ* η vanish by virtue of the orthogo-
nality of the functions ψη9 and j ψ*ψη dq = 1 by virtue of their 
normalisation. Thus 

Σ fnmCm — fen 
m 

or 

Σ (/»«-/*»«)*« = ° · (H.14) 
m 

Thus we have obtained a system of homogeneous algebraic equa-
tions of the first degree (with the cm as unknowns). As is well known, 
such a system has solutions different from zero only if the determinant 
formed by the coefficients in the equations vanishes, i.e. only if 

\fnm—fenm\ = 0. 

The roots of this equation (in which/is regarded as the unknown) are 
4 
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the possible values of the quantity / . The set of values cm satisfying the 
equations (11.14) when/is equal to any of these values determines the 
corresponding eigenfunction. 

If, in the definition (11.6) of the matrix elements of the quantity / 
we take as ψη the eigenfunctions of this quantity, then from the equa-
t i o n / ^ = /ηψη we have 

fnm = ίψη/ψηι dq = fm j ψ„ψιη dq. 

By virtue of the orthogonality and normalisation of the functions 
y>m9 this gives fnm = 0 for η ^ m and fmm = fm. Thus only the diagonal 
matrix elements are different from zero, and each of these is equal to 
the corresponding eigenvalue of the quantity / . A matrix with only 
these elements different from zero is said to be put in diagonal form. 
In particular, in the usual representation, with the wave functions of 
the stationary states as the functions ipm9 the energy matrix is diagonal 
(and so are the matrices of all other physical quantities having definite 
values in the stationary states). In general, the matrix of a quantity / 
defined with respect to the eigenfunctions of some operator g, is said 
to be the matrix of f in a representation in which g is diagonal We shall 
always, except where the subject is specially mentioned, understand 
in future by the matrix of a physical quantity its matrix in the usual 
representation, in which the energy is diagonal. Everything that has 
been said above regarding the dependence of matrices on time refers, 
of course, only to this usual representation.1" 

§12. Momentum 

Let us consider a closed system of particles. Since all positions 
in space of such a system as a whole are equivalent, we can say, in 
particular, that the Hamiltonian of the system does not vary when the 
system undergoes a parallel displacement over any distance. It is 
sufficient that this condition should be fulfilled for an arbitrary small 
displacement. 

t Bearing in mind the diagonality of the energy matrix, it is easy to see that 
equation (11.8) is the operator relation (9.2) written in matrix form. 
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An infinitely small parallel displacement over a distance dt signifies 
a transformation under which the radius vectors ra of all the particles 
(a being the number of the particle) receive the same increment 
or : ra re+<5r. An arbitrary function y(r 1 ? r 2 , . . . ) of the coordinates 
of the particles, under such a transformation, becomes the function 

ψ(τχ+δτ9 r2+<5r, . . . ) = ψ(*ι> *2, . . . ) + * · Σ V * V 
a 

= ^l + <5r. £ v e j y O r i » r 2 , . . . ) 

( V f l denotes the operator of differentiation with respect to r j . The ex-
pression 

l + o r . £ v f l (12.1) 
a 

can be regarded as the operator of an infinitely small displacement, 
which converts the function ip(rl9 r 2,...) into the function ipfa+dr, 
r 2 +or , . . . ) . 

The statement that some transformation does not change the 
Hamiltonian means that, if we make this transformation on the 
function Ηψ9 the result is the same as if we make it only on the function 
ψ and then apply the operator H. Mathematically, this can be written 
as follows. Let 6 be the operator which effects the transformation in 
question. Then we have ΰ(Ηψ) = Η(ό\ρ\ whence 

όΗ-Ηό = 0, (12.2) 

i.e. the Hamiltonian must commute with the operator 0. 
In the case considered, the operator ό is the operator (12.1) of an 

infinitely small displacement. Since the unit operator (the operator 
of multiplying by unity) commutes, of course, with any operator, and 
the constant factor or can be taken in front of i / , the condition (12.2) 
reduces here to 

(12.3) 

4* 
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As we know, the commutability of an operator (not containing the 
time explicitly) with Η means that the physical quantity corresponding 
to that operator is conserved. The quantity whose conservation for a 
closed system follows from the homogeneity of space is the momentum 
of the system (see Mechanics and Electrodynamics, §7). Thus the rela-
tion (12.3) expresses the law of conservation of momentum in quan-
tum mechanics; the operator Σνα must correspond, apart from a 
constant factor, to the total momentum of the system, and each term 
v a of the sum to the momentum of an individual particle. 

The coefficient of proportionality between the operator ρ of the 
momentum of a particle and the operator V can be determined by 
means of the passage to the limit of classical mechanics. Putting ρ = c a 
and using the limiting expression (6.1) for the wave function, we ha ν 

$ψ = (i/h)cae«ns vS = c(i\K)W v5, 

i.e. in the classical approximation the effect of the operator ρ reduces 
to multiplication by (ijh)c V.S. The gradient V.S is the momentum 
ρ of the particle (see Mechanics and Electrodynamics, §31); hence we 
must have c = — ih. 

Thus the momentum operator of a particle is ρ = — /#v, or, in 
components, 

px = -ih 9/9*, p y = - ih d/dy, pz = - ih d/dz. (12.4) 

It is easy to see that these operators are Hermitian, as they should be. 
For, with arbitrary functions ψ(χ) and φ(χ) which vanish at infinity, 
we have 

and this is the condition that the operator should be Hermitian. 
Since the result of differentiating functions with respect to two 

different variables is independent of the order of differentiation, it is 
clear that the operators of the three components of momentum com-
mute with one another: 

Pxpy-Pypx = 0, PxPz-pzPx = 0, pypz-pzPy = 0. (12.5) 
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This means that all three components of the momentum of a particle 
can simultaneously have definite values. 

Let us find the eigenfunctions and eigenvalues of the momentum 
operators. They are determined by the vector equation 

— ih Vip = νψ* (12.6) 

The solutions are of the form 

ψ = - r , (12.7) 

where C is a constant. If all three components of the momentum are 
given simultaneously, we see that this completely determines the wave 
function of the particle. In other words, the quantities px, py, p2 form 
one of the possible complete sets of physical quantities. Their eigen-
values form a continuous spectrum extending from - o o to -h<». 

According to the rule (5.4) for normalising the eigenfunctions of a 
continuous spectrum, we must have 

J M p * ^ = ¥ - P ) (12.8) 

(where dV = dxdydz\ the integration being extended over all space; 
<5(p' —p) is the three-dimensional ^-function1". The integration can 
be effected by means of the formula* 

(1/2π) J ^ d x = (5(α). (12.9) 
— o o 

We have 
J w v 5 d v = & S * m (p'~"p) 'r ά ν 

= C 2 (2^) 3 o(p' -p) . 

t The (5-function of a vector argument is defined as a product of ό-functions of 
the components of the vector. 

ί The conventional meaning of this formula is that the integral on the left-hand 
side has the properties of the ό-function. When α = 0, the integral diverges; when 
α ^ 0, it is zero, being the integral of a periodic function with alternating sign. 
A further integration over α from — L to +L , the range including the point α = 0, 
gives 
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Hence we see that we must have C2(27rft)3 = 1. Thus the normalised 
function is 

ψρ = (2nti)-*2eW*y» ·'. (12.10) 

The expansion of an arbitrary wave function ψ(τ) of a particle in 
terms of the eigenfunctions ψρ of its momentum operator is simply 
the expansion as a Fourier integral: 

ψ(τ) = Ja(p)yP(r)d 3/? = (2πΚ)-™ f afa)ePi*»-*d*p (12.11) 

(where d3p = d/^ d/?̂  d/?r). The expansion coefficients a(p) are, accor-
ding to formula (5.2), 

4p) = J y(r)^p(r) d F = {2nh)-™ j V ( r ) r ( ' * ^ ^ dK. (12.12) 

The function a(p) can be regarded (see §5) as the wave function of the 
particle in the momentum representation; \a(j>)\2 d?p is the probability 
that the momentum has a value in the interval d3p. The formulae 
(12.11) and (12.12) give the relation between the wave functions in 
the two representations. 

§13. Uncertainty relations 

Let us derive the rules for commutation between momentum and 
coordinate operators. Since the result of successively differentiating 
with respect to one of the variables x, y, ζ and multiplying by another 
of them does not depend on the order of these operations, we have 

pxy-ypx = o, pxz-zpx = o, (i3.i) 

and similarly for py, pz. 
To derive the commutation rule for px and x, we write 

(ρχΧ—χβχ)ψ = —ih d(xyi)/dx+ihx dip/dx 

= —ifty). 

We see that the result of the action of the operator pxx—xpx reduces 
to multiplication by — ih; the same is true, of course, of the commu-
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tation of py with y and pz with z. Thus we have1" 

pxx—xpx=—ih9 pyy—ypy=-ih9 p2z-zpz=-ih. (13.2) 

The relations (13.1) and 13.2) show that the coordinate of a particle 
along one of the axes can have a definite value at the same time as the 
components of the momentum along the other two axes; the coordi-
nate and momentum component along the same axis, however, cannot 
exist simultaneously. In particular, the particle cannot be at a definite 
point in space and at the same time have a definite momentum p. 

Let us suppose that the particle is in some finite region of space, 
whose dimensions along the three axes are (of the order of magnitude 
of) Δχ9 Δγ9 Δζ. Also, let the mean value of the momentum of the 
particle be p 0. Mathematically, this means that the wave function has 
the form ψ = u(r)em)Po'T

9 where i/(r) is a function which differs 
considerably from zero only in the region of space concerned. We ex-
pand the function ψ in terms of the eigenfunctions of the momentum 
operator (i.e. as a Fourier integral). The coefficients tf(p) in this 
expansion are determined by the integrals (12.12) of functions of the 
form w(r)e ( , /* ) ( P o~ p ) ' r . If this integral is to differ considerably from zero, 
the periods of the oscillatory factor ^ ( W ( P o - p ) . r m u s t n o t ^ β s m a u j n 

comparison with the dimensions Δχ9 Δγ9 Δζ of the region in which 
the function w(r) is different from zero. This means that #(p) will be 
considerably different from zero only for values of ρ such that 
(Ροχ—Ρχ) Δχ/ft ;S 1, etc. Since | a(j>) | 2 determines the probability of the 
various values of the momentum, the ranges of values of p x 9 py9 p2 in 
which fl(p) differs from zero are just those in which the components 
of the momentum of the particle may be found, in the state considered. 
Denoting these ranges by Δρχ9 Apy9 Δρζ9 we thus have 

Δρχ Δχ - h9 Δργ Δγ ~ h9 Δρζ Δζ - h. (13.3) 

These relations, known as the uncertainty relations, were obtained by 
Heisenberg in 1927. 

t These relations, discovered in matrix form by Heisenberg in 1925, formed the 
genesis of modern quantum mechanics. 
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We see that, the greater the accuracy with which the coordinate of 
the particle is known (i.e. the less Ax), the greater the uncertainty 
Δρχ in the component of the momentum along the same axis, and 
vice versa. In particular, if the particle is at some completely definite 
point in space (Ax = Ay — Az = 0), then Apx = Apy = Ap2 = °°. 
This means that all values of the momentum are equally probable. 
Conversely, if the particle has a completely definite momentum p, 
then all positions of it in space are equally probable (this is seen 
directly from the wave function (12.7), whose squared modulus is 
quite independent of the coordinates). 

§14. Angular momentum 

In §12, to derive the law of conservation of momentum, we have 
made use of the homogeneity of space relative to a closed system of 
particles. Besides its homogeneity, space has also the property of 
isotropy: all directions in it are equivalent. Hence the Hamiltonian of 
a closed system cannot change when the system rotates as a whole 
through an arbitrary angle about an arbitrary axis. It is sufficient 
to require the fulfilment of this condition for an infinitely small rota-
tion. 

Let <5φ be the vector of an infinitely small rotation, equal in magni-
tude to the angle δφ of the rotation and directed along the axis about 
which the rotation takes place. The changes δτα (in the radius vectors 
ta of the particles) in such a rotation are 

δτα = δφΧΤα 

(see Mechanics and Electrodynamics, §9). An arbitrary function 
xp{rl9 r 2 , . . . ) is thereby transformed into the function 

Y<ri+ftri, r2+<5r2, . . . ) = yfri, r 2, . . . ) + Σ * β . V e y 
a 

= ( ΐ + δ φ . Σ Γ « Χ ν β ] ν < Γ ι , Γ 2 , . . . ) · 
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which expresses a certain law of conservation. 
The quantity whose conservation for a closed system follows from 

the property of isotropy of space is the angular momentum of the 
system (see Mechanics and Electrodynamics, §9). Thus the operator 
Ζ τ α Χ ν α must correspond, apart from a constant factor, to the total 
angular momentum of the system, and each of the terms r f l Xv a of 
this sum corresponds to the angular momentum of an individual 
particle. 

The coefficient of proportionality must be put equal to — ih\ 
then the expression for the angular momentum operator of a particle 
is —/#rXv = rXp and corresponds exactly to the familiar classical 
expression rXp. Henceforward we shall always use the angular 
momentum measured in units of h. The angular momentum operator 
of a particle, so defined, will be denoted by 1, and that of the whole 
system by L . Thus we have for the angular momentum operator of a 
particle 

h\ = rXp = - / # r X V , 

or, in components, 

hlx = yp2-zpy, My = zpx-xp29 hlz = xpy-ypx. (14.3) 

For a system which is in an external field, the angular momentum 
is in general not conserved. However, it may still be conserved if the 
field has a certain symmetry. Thus, if the system is in a centrally 

l + o c p . £ r 0 X V a (14.1) 
The expression 

can be regarded as the "operator of an infinitely small rotation". 
The fact that an infinitely small rotation does not alter the Hamiltonian 
of the system is expressed by the commutability of the rotation operator 
with the operator H. Since <5<p is a constant vector, this condition 
reduces to the relation 

(14.2) 
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symmetric field, all directions in space at the centre are equivalent, 
and hence the angular momentum about this centre will be conserved. 
Similarly, in an axially symmetric field, the component of angular 
momentum along the axis of symmetry is conserved. All these conser-
vation laws holding in classical mechanics are valid in quantum 
mechanics also. 

Let us derive the rules for commutation of the angular momentum 
operators with those of coordinates and linear momenta. For instance, 

Ly-ylx = (\lh)(ypz-~zpy)y-y(ypz-zpy)(\lh) 

= -(l/h)z(pyy-ypy) = iz. 

Similarly, we find 

ΐχχ-χΐχ = 0, 7xy - ylx= iz, ίχζ-ζΊχ = -*>, (14.4) 

and two other sets of three relations obtained from these by cyclic 
interchange of the coordinates and suffixes x, y , z. 

It is easily seen that similar commutation rules hold for the angular 
momentum and linear momentum operators: 

tpx-Pxt = 0, Ixpy-pylx = ipz, 7xpz-pzlx = ~ ipy. (14.5) 

By means of these formulae, it is easy to find the rules for commuta-

tion of the operators lx, ly, lz with one another. We have 

h(Uy-7y7x) = 7x(zpx - xpz) - (zpx - xpz)lx 

= (ϊχζ - ztx)px - x(7xpz - pjx) 

= -iypx+ixpy = iMz. 

Uy = ilx, Izlx - Uz = ily , Uy - Ux = Hz · (14.6) 

Exactly similar relations hold for the operators Lx, Ly, Lz of the total 
angular momentum of the system. For, since the angular momentum 

Thus 
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operators of different individual particles commute, we have, for 
instance, 

Σ by Σ bz ~~ Σ bz Σ by = Σ (bybz lazlay) ~ IΣ * 
α α α α α α 

Thus 

LyLz LZLy = = -̂̂ JC 5 Ϊ-'Ζ^'Χ ϊ-ιχ^ΊΖ = = , LxLy LyLx = = fΧ/£ . 

(14.7) 

The relations (14.7) show that the three components of the angular 
momentum cannot simultaneously have definite values (except in the 
case where all three components simultaneously vanish: see below). 
In this respect the angular momentum is fundamentally different 
from the linear momentum, whose three components can be simul-
taneously measured. 

From the operators Lx,Ly,Lz we can form the operator of the 
square of the modulus of the angular momentum vector: 

l 2 = L2

x+t2y+tl (14.8) 

This operator commutes with each of the operators Lx,Ly,Lz: 

L2LX-LJL2 = 0, L2Ly-LyL2 = 0, i 2 L z - L z L 2 = 0. (14.9) 

Using (14.7), we have, for example, 

ίίΧίιΖ LZLX = LX{LXLZ LJLx) -f- (LXLZ JLzLx)Lx 

= i(LXLy + LyLX)) 

LyLZ LZLy = l(LXLy-\- LyLX), 

Lz^z ^zLz

 = = 0. 

Adding these equations, we have the third relation (14.9). Physically, 
the relations (14.9) mean that the square of the angular momentum, 
i.e. its modulus, can have a definite value at the same time as one of 
its components. 
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(14.13) 

(14.14) 

Substitution in (14.12) gives the squared angular momentum operator 
of the particle: 

(14.15) 

It should be noticed that this is, apart from a factor, the angular part 
of the Laplacian operator. 

Instead of the operators Lx, Ly it is often more convenient to use 
the complex combinations 

l+=Lx+iLy, L-=Lx-ily. (14.10) 

It is easily verified by direct calculation using (14.7) that the following 
commutation rules hold: 

L+L——L—L+ = >2.LZ, LZL+ L+JLZ ^ 3-**-\- 5 

' t2L--L-tz = -L-, ( 1 4 1 1 ) 

and it is also not difficult to see that 

L 2 = L-L++1%+Lz. (14.12) 

Finally, we shall give some frequently used expressions for the 
angular momentum operator of a single particle in spherical polar 
coordinates. Defining the latter by means of the usual relations 

χ = r sin θ cos φ, y = r sin θ sin φ, ζ — r cos 0, 

we have after a simple calculation 
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§15. Eigenvalues of the angular momentum 

In order to determine the eigenvalues of the component, in some 
direction, of the angular momentum of a particle, it is convenient 
to use the expression for its operator in spherical polar coordinates, 
taking the direction in question as the polar axis. According to formula 
(14.13), the equation Ιζψ = Ιζψ can be written in the form 

— idy)/d(/) = 12ψ. (15.1) 
Its solution is 

where / ( r , Θ) is an arbitrary function of r and Θ. If the function ψ is to 
be single-valued, it must be periodic in φ, with period 2?r. Hence we 
find* 

lz = m, where m = 0, ± 1, ± 2 , . . . . (15.2) 

Thus the eigenvalues lz are the positive and negative integers, in-
cluding zero. The factor depending on φ, which characterises the 
eigenfunctions of the operator /z, is denoted by 

Φ^φ) = (2jt)-^e^. (15.3) 

These functions are normalised so that 

J Φη\(Φ)Φ„<Φ)άφ =dmm>. (15.4) 
0 

The eigenvalues of the z-component of the total angular momentum 
of the system are evidently also equal to the positive and negative 
integers: 

Lz = M, where Μ = 0, ± 1, ± 2 , . . . (15.5) 

(this follows at once from the fact that the operator Lz is equal to the 

sum of the commuting operators lz for the individual particles). 

t The customary notation for the eigenvalues of the angular momentum com-
ponent is m, which also denotes the mass of a particle, but this should not lead to 
any confusion. 
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Since the direction of the z-axis is in no way distinctive, it is clear 
that the same result is obtained for Lx9 Ly and in general for the com-
ponent of the angular momentum in any direction: they can all take 
integral values only. At first sight this result may appear paradoxical, 
particularly if we apply it to two directions infinitely close to each 
other. In fact, however, it must be remembered that the only common 
eigenfunction of the operators Lx, Ly9 Lz corresponds to the simul-
taneous values 

Lx = Ly = Lz

 = 0; 

in this case the angular momentum vector is zero, and consequently 
so is its projection upon any direction. If even one of the eigenvalues 
Lx, Ly, Lz is not zero, the operators Lx, Ly, Lz have no common eigen-
functions. In other words, there is no state in which two or three 
of the angular momentum components in different directions simul-
taneously have definite values different from zero, so that we can say 
only that one of them is integral. 

The stationary states of a system which differ only in the value 
of Μ have the same energy; this follows from general considerations, 
based on the fact that the direction of the z-axis is in no way distinctive. 
Thus the energy levels of a system whose angular momentum is 
conserved (and is not zero) are always degenerate.1" 

Let us now look for the eigenvalues of the square of the angular 
momentum. We shall show how these values may be found, starting 
from the commutation rules (14.7) only. We denote by ψΜ the wave 
functions of the stationary states belonging to one degenerate energy 
level and having the same value of L 2 . 

First of all we note that, since the two directions of the z-axis are 
physically equivalent, for every possible positive value Μ = + \M\ 
there is a corresponding negative value Μ = — \M\. Let L (a positive 
integer) denote the greatest possible value of | Μ |. 

t This is a particular case of the general theorem, mentioned in §10, which states 
that the levels are degenerate when two or more conserved quantities exist whose 
operators do not commute. Here the components of the angular momentum are 
such quantities. 



§15 Eigenvalues of the angular momentum 51 

On applying the operator L2L± to the eigenfunction ψΜ of the 
operator L2 and using the commutation rule (14.11), we find 

LzL±xpM = 1±ΙζψΜ±1±ψΜ = (M±l)L±ipM. 

Hence we see that the function L±ipM is (apart from a normalisation 
constant) the eigenfunction corresponding to the value Μ ±1 of the 
quantity L2; we can write 

ψΜ+ι = constant xL+ψΜ, ψΜ-ι = constant xL-y)M. (15.6) 

If we put Μ = L in the first of these equations, we must have 
identically 

L+VL = 0, (15.7) 

since there is by definition no state with Μ > L. Applying the oper-
ator Z_ to this equation and using the relation (14.12), we obtain 

Z-I+VL = (l2-Pz-Lz)WL = 0. 

Since, however, the ψΜ are common eigenfunctions of the operators 

L 2 and £ z , we have 

l?\pL = L 2 ^ L , XSVL = L^ipL, LzipL = L ^ L , 

so that the equation found above gives 

L 2 = L ( L + 1 ) . (15.8) 

This formula determines the required eigenvalues of the square of 
the angular momentum; the number L takes all positive integral 
values, including zero. For a given value of L, the component L2 = Μ 
of the angular momentum can take the values 

Μ = L,L—1, . . . , —L, (15.9) 

i.e. 2L+1 different values in all. The energy level corresponding to the 
angular momentum L thus has (2L+l)-fold degeneracy. This is 
usually called degeneracy with respect to the direction of the angular 
momentum. A state with angular momentum L = 0 (when all three 
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components are also zero) is not degenerate; we notice that the wave 
function of such a state is spherically symmetric. This is clear from 
the fact that the change in the wave function in any infinitely small 
rotation, given by Jjp, is in this case zero. 

We shall often, for the sake of brevity and in accordance with 
custom, speak of the "angular momentum" L of a system, under-
standing by this an angular momentum whose square is L(L-\-1); the 
angular momentum of a single particle will be denoted by the lower-
case letter /. The z-component of the angular momentum is usually 
called just the "angular-momentum component". 

Let us calculate the matrix elements of the quantities Lx and Ly for 
transitions between states having the same energy and angular momen-
tum L, but different values of the angular-momentum component M. 

It is seen from formulae (15.6) that, in the matrices of the operators 
L+ and 1L, only those elements are different from zero which corre-
spond to transitions Μ M+1 and Μ -*• Μ— 1 respectively. Taking 
this into account, we find the diagonal matrix elements (for transitions 
L,M— 1 ->L,M—1) on both sides of the equation (14.12), obtaining 

we can rewrite this equation in the form 

| ( L + ) M , M - I I 2 = L(L+1)-M(M-1) = (L-M+\){L+M)9 

whence (with the notation (11.3)) 

(M\L+\M-1) = (M-l \L-\M) = V t ( £ + M ) ( L - M + 1 ) ] . (15.10) 

Hence we have for the non-zero matrix elements of the quantities 
Lx and Ly themselves 

L ( L + 1 ) = ( L _ ) M _ I , M ( L + ) M , M - I + M 2 - M . 

Noticing that, since the operators L X and Ly are Hermitian, 

(LJ)M-I,M = (L+)M,M-I> 

(M\Ly\M-\) 

(M\Lx\M-\) (M-l\Lx\M) 
Wi(L+M)(L-M+1)], 
-(M-l \Ly\M) 
-\W[(L+M){L-M+\)]. 

(15.11) 

file:///L-/M
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The diagonal elements in the matrices of the quantities L x and L y are 
zero. Since the diagonal matrix element gives the mean value of the 
quantity in the corresponding state, it follows that the mean values 
L x and Ly are zero in states having definite values of L z . Thus, if the 
angular-momentum component in a given direction in space has a 
definite value, the vector L itself is in that direction. 

§16. Eigenfunctions of the angular momentum 

The wave function of a particle is not completely determined when 
the values of / and m are prescribed. This is seen from the fact that 
the expressions for the operators of these quantities in spherical polar 
coordinates contain only the angles θ and φ, so that their eigenfunctions 
can contain an arbitrary factor depending on r. We shall here consider 
only the angular part of the wave function which characterises the 
eigenfunctions of the angular momentum, and denote this by Γ / / Μ(θ, φ), 
with the normalisation condition 

j\Ylm\*do = h 

where do = sin θ άθ άφ is an element of solid angle. 
The functions Ylm with different / or m are automatically orthogonal, 

as being the eigenfunctions of angular momentum operators corre-
sponding to different eigenvalues, and together with the normalisation 
condition this gives 

2π π 

J J YtntYim sin θ άθ άφ = <5/Am/. (16.1) 
ο ο 

The most direct method of calculating the required functions is 
by directly solving the problem of finding the eigenfunctions of the 
operator l 2 written in spherical polar coordinates. The equation 

Ρψ = 1(1+1) ψ 
becomes 

(16.2) 
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This equation is well known in the theory of spherical harmonics. 
It has solutions satisfying the conditions of finiteness and single-
valuedness for positive integral values of / Ξ> in agreement with 
the eigenvalues of the angular momentum obtained above by the 
matrix method. The corresponding solutions are what are called 
associated Legendre polynomials P 7

m(cos Θ). 
Thus the angular wave functions are 

Ytje, φ) = constantXPf(cos Θ) eim^ (16.5) 

and are mathematically just spherical harmonic functions normalised 
in a particular way. We shall not give here the general expression for 
the normalisation constant, but only list the explicit formulae for the 
first few functions (/ = 0, 1, 2): 

Yoo = 1/V(4«), 

Yio = V(3/4«) cos θ, Yi, ±i = TV(3/8jt) sin θ e±*, 

Y20 = V (5 /16rc)(3cos 2 0- l ) , (16.6) 

Y2, ±1 = ^ (15 /8? ! ) cos θ sin θ e±'*, 

Y2, ±2 = V(15/32^sin 2 0e± 2 i < s . 

For m = 0, the associated Legendre polynomials are called simply 
Legendre polynomials P^cos Θ). The corresponding normalised spher-
ical harmonics are 

(16.7) 

This equation admits of separation of the variables, and its solution 
can be sought in the form 

Ylm = Φ„(φ) ΘΙΜ(Θ)9 (16.3) 

where the Φηι are the functions (15.3). Substituting (16.3) in (16.2), we 
obtain for the function 0lm the equation 

(16.4) 
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If / = 0 (so that m = 0 also), the function (16.7) reduces to a 
constant. In other words, the wave functions of the states of a particle 
with / = 0 depend only on r, i.e. they have complete spherical sym-
metry, in accordance with the general result given in §15. If one of the 
spherical harmonics in (16.1) is Too, then the other satisfies 

J y / m d o = 0 (1*0). (16.8) 

§17. Addition of angular momenta 

Let us consider a system composed of two parts whose interaction 
is weak. If the interaction is entirely neglected, then for each part the 
law of conservation of angular momentum holds. The angular mo-
mentum L of the whole system can be regarded as the sum of the 
angular momenta Li and L 2 of its parts. In the next approximation, 
when the weak interaction is taken into account, Li and L 2 are not 
exactly conserved, but the numbers L\ and L 2 which determine their 
squares remain "good" quantum numbers suitable for an approximate 
description of the state of the system. 

For such systems the question arises regarding the "law of addi-
tion" of angular momenta: what are the possible values of L for given 
values of L\ and L 2 ? The law of addition for the components of 
angular momentum is evident: since Lz — Ll2+L2z, it follows that 

Μ = M! + M2. (17.1) 

There is no such simple relation for the operators of the squared 
angular momenta, however, and to derive their "law of addition" we 
reason as follows. 

If we take the quantities L 2 ,1%, L l z , L^, as a complete set of physi-
cal quantities,* every state will be determined by the values of the 
numbers Li, L 2 , Mi, M 2 . For given Li and L 2 , the numbers Mi and 

t Together with such other quantities as form a complete set when combined 
with these four. These other quantities play no part in the subsequent discussion, 
and for brevity we shall ignore them entirely, and conventionally call the above 
four quantities a complete set. 

5* 
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M 2 take (2Li + l) and (2L 2 +1) different values respectively, so that 
there are altogether (2Li-f 1)(2L2 +1) different states with the same 
Lx and L2. We denote the wave functions of the states for this repre-
sentation by <t>LLLIMTMT-

Instead of the above four quantities, we can take the four quantities 
L 2 , Lg, L 2 , Lz as a complete set. Then every state is characterised by 
the values of the numbers Li, L 2 , L, Μ (we denote the corresponding 
wave functions by ^L^LM)- F ° r given L1 and L 2 , there must of course 
be (2Li +1) (2L 2 +1) different states as before, i.e. for given Lx and L2 

the pair of numbers L and Μ must take (2Li + 1) (2L 2 4-1) pairs of 
values. These values can be determined as follows. 

By adding the various possible values of Μχ and M 2 , we get the 
corresponding values of M, as shown below: 

Μι M 2 Μ 

Lx Li Lx-\-L2 

u J Z-i-1 

Lx L2—2 

L i - l L a - 1 

L\ — 2 Z/2 

Lx+L2-l 

Lx+L2-2 

We see that the greatest possible value of Μ is Μ = L x + L 2 , 
corresponding to one state φ (one pair of values of Mi and M 2 ) . 
The greatest possible value of Μ in the states ψ, and hence the greatest 
possible value of L also, is therefore L1+L2. Next, there are two 
states φ with Μ = Lx+L2— 1. Consequently, there must also be two 
states ψ with this value of M; one of them is the state with L = Lx+L2 

(and Μ = L— 1), and the other is that with L = Lx+L2—1 (and 
Μ = L). For the value Μ = Li+Z^—2 there are three different 
states 0. This means that, besides the values L = Lx+L2, L = Li+L 2 — 
1, the value L = Li+I^—2 can occur. 

The argument can be continued in this way so long as a decrease 
of Μ by 1 increases by 1 the number of states with a given M. It is 
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easily seen that this is so until Μ reaches the value |LX—L 2 | . When Μ 
decreases further, the number of states no longer increases, remaining 
equal to 2L 2 +1 (if L2 ^ L±). Thus |LX—L 2 | is the least possible value 
of L, and we arrive at the result that, for given Lx and L 2 , the number 
L can take the values 

L = L i + L a , L 1 + L a - l , . . . , I X i - i 2 | , (17.2) 

that is 21 ,2+1 different values altogether (supposing that Li^Li). 
It is easy to verify that we do in fact obtain (2Li+ 1)(2L 2+1) different 
values of the pair of numbers L, M. Here it is important to note 
that, if we ignore the 2L+1 values of Μ for a given L, then only one 
state will correspond to each of the possible values (17.2) of L. 

This result can be illustrated by means of what is called the vector 
model If we take two vectors Li and L 2 of lengths Li and L 2 , then 
the values of L are represented by the integral lengths of the vector L 
which are obtained by vector addition of Li and L 2 ; the greatest 
value of L is L1+L2, which is obtained when Li and L 2 are parallel, 
and the least value is \Li— L 2 | , when Li and L 2 are antiparallel. 

In states with definite values of the angular momenta Li, L 2 and of 
the total angular momentum L, the scalar products Li«L 2, L«Li and 
L«L 2 also have definite values. These values are easily found. To cal-
culate Li«L 2, we write L = L1+L2 or, squaring and transposing, 

2Li*L<2 = ί? l»i—!<2« 

Replacing the operators on the right-hand side of this equation by 
their eigenvalues, we obtain the eigenvalue of the operator on the 
left-hand side: 

L X . L 2 = i { L ( L + l ) - L ! ( L i + 1) -L 2 (L 2 +1)} . (17.3) 

Similarly we find 

L-Li = l{L(L- | - l )+Li(L 1 +l ) - -L2( i2+l)} . (17.4) 

If 
WL]MX

 a n ( * WLZM2

 a r e the wave functions of the two parts of the 
system, then the wave function of the whole system (the interaction 
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of the parts being again neglected) is the product 

<$>LXLTMXMT = WLIMMI^ · 0 7 · 5 ) 

These states have definite values of Mi and M2 (as well as of Li and L2). 
The states having definite values of L and Μ are superpositions of the 
states (17.5) with various values of Mi and M2 such that M1+M2 = M. 
Their wave functions are the linear combinations 

WL^LM — Σ ^LILIM^MZ ΦLILIMIMI (17.6) 
MLTMT 

with coefficients C which depend on the values of all the quantum 
numbers shown. These coefficients are called vector addition coefficients 
or Clebsch-Gordan coefficients. 

§18. Angular momentum selection rules 

We have seen that in both classical and quantum mechanics the law 
of conservation of angular momentum is a consequence of the isotropy 
of space with respect to a closed system. This already demonstrates 
the relation between the angular momentum and the symmetry prop-
erties under rotation. But in quantum mechanics the relation in 
question is a particularly far-reaching one, and essentially constitutes 
the basic content of the concept of angular momentum, especially as 
the classical definition of the angular momentum of a particle as the 
product r x p has no direct significance in quantum mechanics, the 
vectors of momentum and angular momentum not being simultane-
ously measurable. 

It has been shown in §16 that, if the values of / and m are specified, 
the angular dependence of the wave function of the particle is deter-
mined, and therefore so are all its symmetry properties under rotation. 
The most general formulation of these properties involves specifying 
the transformation of the wave functions when the coordinate system 
is rotated. 

The wave function \pLM of a system of particles (with specified values 
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of L and Μ) remains constant* only under a rotation of the coordinate 
system about the z-axis. Any rotation that alters the direction of the 
z-axis has the result that the angular momentum component along 
the new z-axis does not have a definite value. This means that, in the 
new coordinates, the wave function in general becomes a superposition 
(a linear combination) of 2L+1 functions corresponding to the possible 
values of Μ for the given L. We can say that the 2L+1 functions \ p L M 

are transformed into linear combinations of one another when the 
coordinate system is rotated.! The law governing this transformation 
(i.e. the coefficients in the linear combination, as functions of the 
angles of rotation of the coordinate axes) is entirely determined by 
specifying the value of L. Thus the angular momentum L acquires 
the significance of a quantum number which classifies the states of the 
system according to their transformation properties under rotation 
of the coordinate system. This aspect of the concept of angular momen-
tum in quantum mechanics is particularly important because it is 
not directly related to the explicit angular dependence of the wave 
functions; the law of mutual transformation of these functions can 
be stated without reference to that dependence. 

We shall show how this approach can be used to find the selection 
rules (with respect to angular momentum) for the matrix elements of 
various quantities, i.e. the rules that determine the transitions for 
which the matrix elements can be different from zero. 

To do so, we first note that the concept of angular momentum as a 
classificatory feature can be applied, in a purely conventional mathe-
matical manner, not only to the wave functions but also to other 
physical quantities. For example, the angular momentum L = 0 
"corresponds" to any scalar quantity (i.e. a quantity which is un-
changed by a transformation of the coordinates), in the sense that when 
L = 0, 2L+1 = 1, i.e. there is only one quantity that is "transformed 

t Apart from an unimportant phase factor. 
t In mathematical terms, these functions are said to form irreducible representa-

tions of the rotation group. The number of functions which are transformed into 
linear combinations of one another is called the dimension of the representation; 
it is assumed that this number cannot be made smaller by taking any other linear 
combinations of these functions. 
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into a linear combination of itself".1" Similarly, the angular momentum 
L = 1 ( 2 L + 1 = 3 ) can be assigned to a vector quantity, since the 
three independent components of the vector are transformed into 
linear combinations of one another when the coordinate system is 
rotated. If the components of the vector are expressed in terms of the 
spherical polar angles θ and φ which define its direction, we have 

Comparison with the functions (16.6) shows that the component Az 

corresponds to the angular momentum component Μ — 0, and the 
complex combinations A+ and A_ correspond to Μ = 1 and — 1 
respectively. 

For simplicity and greater clarity, we shall consider quantities 
characterising the states of a single particle (free, or in a centrally 
symmetric external field). L e t / b e any scalar physical quantity. Let us 
take its matrix elements with respect to states having definite values 
of / and m: 

where η and ή are the remaining quantities (other than / and m) which 
define the states of the particle. 

The three factors in the integrand (^/*m/,/ and ψ1ηι) can be put in 
correspondence with pairs of values of the angular momentum and its 
component: (/', —m'), (0,0), and (/, m); taking the complex conjugate 
changes the sign of the exponent πηφ in (16.5), thus effectively changing 
the sign of the angular momentum component. These angular momenta 
can be added in each of the possible ways to form a total angular 
momentum and its component (denoted by A and μ). This shows the 
transformation properties of the functions of which a linear combina-

t To avoid confusion, it should be emphasised that from this standpoint the 
wave functions y>LM (with L&l) are not "scalars"; all the 2L-f 1 functions y>£M 

with various values of Mare to be regarded in this respect as constituting a single 
quantity. 

A+ = Ax + iAy = A sin θ e^ 
A_ = Ax — iAy — A sin θ e~^ 
Az — A cos θ 

(Μ = 1), 

(Μ = 0). 
(18.1) 

{n'I'm' l/l nlm) = j y>pm>fy>lm dV, (18.2) 
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tion can in principle give an expansion of the integrand in (18.2): 

Wi'm'fWim = Υ,^ΑμψΑμ (μ = m-m'\ (18.3) 
Λ 

where the αΛμ are constants and the ψΑμ are functions whose trans-
formation properties are the same as those of the angular momentum 
eigenfunctions. To solve the problem of the selection rules, however, 
there is no need to carry out this expansion. We need only note that 
all the terms of the sum except that with Λ = μ = 0 give zero on 
integration over angles (from the condition (16.8)). The matrix element 
(18.2) can therefore be different from zero only if the values Λ = μ = 0 
are actually present in the expansion (18.3), and the value Λ = 0 can 
be obtained on adding two angular momenta / and /' only if / = /'. 

Thus we conclude that the matrix elements of a scalar can differ 
from zero only for transitions in which the angular momentum and 
its component are unchanged: 

/' = /, rri = m. (18.4) 

Moreover, since specifying m defines only the orientation of the system 
with respect to the coordinate axes, and the value of the scalar / is 
independent of this orientation, we can say that the matrix elements 
(n'lm l/l nlm) are independent of m. 

The selection rules for the matrix elements (ή I'm' \ A | nlm) of a 
vector A can be found in a similar manner. The vector is assigned an 
"angular momentum" of 1. Adding this to the angular momentum /, 
we get the values / + 1 , /, /— 1 (if / ^ 0; when / = 0, the addition gives 
only the single value 1). The subsequent addition of the angular mo-
mentum /' must give a total "angular momentum" Λ = 0 if the integral 
is to differ from zero. Then /' must be equal to one of the results of the 
previous addition, i.e. the permissible values are 

/' = / , / ± l , (18.5) 

and the matrix elements for transitions between states with Γ = I = 0 
are also forbidden. 
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The selection rules for the angular momentum components m are 
different for the different components of the vector. Using (18.1), we 
can easily derive the following rules: 

The matrix elements of the vector quantity depend on the values of M. 
It can be shown (although we shall not pause to do so here) that this 
dependence also is universal, being an unequivocal consequence 
of the transformation properties of the angular momentum eigen-
functions. 

One further case is that of a symmetrical tensor Aik of rank two. 
Such a tensor has six different components, but these do not form a 
single group as regards their transformation properties. The reason 
is that the trace of the tensor (i.e. the sum AH = Axx+Ayy+AZ2) is a 
scalar, and must be excluded from the set of quantities undergoing 
transformation; in other words, we must consider a tensor having 
zero trace. Such a tensor is said to be irreducible; it has five independ-
ent components, and can be assigned the angular momentum L — 

It must be emphasised that, although we have here referred only to 
matrix elements for a single particle, all the results are in fact conse-
quences of the general transformation properties of the wave functions, 
and are therefore equally valid for any system of particles whose 
angular momentum is conserved. 

Besides the parallel displacements and rotations of the coordinate 
system, the invariance under which represents the homogeneity and 
isotropy of space respectively, there is another transformation which 

for A+ = Ax + iA} 

for A_ = Ax — iA 

for AZ9 

M' = M + 1 , " 
M' = M - l , 
M' = M. 

(18.6) 

2 (2L+1 = 5). f 

§19. Parity of a state 

t An example of a physical quantity of this kind is the electric quadrupole 
moment of a system. 
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leaves unaltered the Hamiltonian of a closed system. This is what is 
called the inversion transformation, which consists in simultaneously 
changing the sign of all the coordinates, i.e. a reversal of the direction 
of each coordinate axis; a right-handed coordinate system then be-
comes left-handed, and vice versa. The invariance of the Hamiltonian 
under this transformation expresses the symmetry of space under 
mirror reflections.* In classical mechanics, the invariance of Hamilton's 
function with respect to inversion does not lead to a conservation law, 
but the situation is different in quantum mechanics. 

Let us denote by Ρ (for "parity") a symbolic inversion operator 
whose effect on a wave function ^(r) is to change the sign of the co-
ordinates : 

lV(r) = ψ(-τ). (19.1) 

It is easy to find the eigenvalues Ρ of this operator, which are deter-
mined by the equation 

Ρψ(ν) = Ρψ(τ). (19.2) 

To do this, we notice that a double application of the inversion opera-
tor amounts to identity: the argument of the function is unchanged. 
In other words, we have 

Ρ2ψ = Ρ*ψ = ψ, i.e. Ρ2 = 1, whence P= ± 1 . (19.3) 

Thus the eigenfunctions of the inversion operator are either unchanged 
or change in sign when acted upon by this operator. In the first case, 
the wave function (and the corresponding state) is said to be even, and 
in the second it is said to be odd. 

The invariance of the Hamiltonian under inversion (i.e. the fact 
that the operators Ρ and Η commute) thus expresses the law of conser-
vation of parity, if the state of a closed system has a given parity (i.e. 
if it is even, or odd), then this parity is conserved in the course of time.i 

t Invariance under inversion exists also for the Hamiltonian of a system of par-
ticles in a centrally symmetric field with the centre at the origin. 

% To avoid misunderstanding, it should be mentioned that this refers to the 
non-relativistic theory. There exist interactions in Nature, falling in the realm of 
relativistic theory, which violate the conservation of parity (see §90). 
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The angular momentum operator is also invariant under inversion, 
which changes the sign of the coordinates and of the operators of 
differentiation with respect to them; the operators (14.3) thus remain 
unaltered. In other words, the inversion operator commutes with the 
angular momentum operator, and this means that the system can have 
a definite parity simultaneously with definite values of the angular 
momentum L and its component M. 

There are specific parity selection rules for the matrix elements of 
various physical quantities. Let us first consider scalars. Here we must 
distinguish true scalars, which are unchanged by inversion, from 
pseudoscalars, which change sign, for instance the scalar product of 
an axial and a polar vector. 

It is easily seen that the matrix elements of a true scalar / can be 
different from zero only for transitions without change of parity: 
the matrix element for a transition between states of different parity is 

fug = ^WufWgdq, 

where the function ipg is even and ipu odd, and the integrand changes 
sign when all the coordinates do so. But the integral over all space 
cannot be affected by merely renaming the variables of integration. 
Hence it follows that fug —~fuv or fug = 0. For a pseudoscalar, 
however, the matrix elements are different from zero only for transi-
tions between states of different parity. 

The selection rules for vector quantities can be obtained in a similar 
manner. Here it must be remembered that ordinary (polar) vectors 
change sign under inversion, but axial vectors are unchanged, for 
instance the angular momentum vector, which is the vector product 
of the two polar vectors ρ and r. Bearing this in mind, we find that the 
matrix elements are different from zero for transitions with change of 
parity for a polar vector, and without change of parity for an axial vector. 

Let us determine the parity of the state of a single particle with angu-
lar momentum /. The inversion transformation (x— x, y — y, 
ζ — ζ) is, in spherical polar coordinates, the transformation 

r r, θ -*• π—θ, φ φ-{-π. (19.4) 
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The dependence of the wave function of the particle on the angle is 
given by the eigenfunction Ylm of the angular momentum (16.5). 
When φ is replaced by φ+ττ, the factor eim* is multiplied by (— l ) m , 
and when θ is replaced by π—0, PJ"(cos 0) becomes P7

m(—cos 0) = 
( - l ) i _ m P f ( c o s i ) . Thus the whole function is multiplied by ( - 1 / , 
i.e. the parity of a state with a given value of / is 

P = ( - l ) ' . (19.5) 

We see that all states with even / are even, and all those with odd / are 
odd. The parity of a state depends only on /, not on m. 

Let us now determine the addition rule for parities. The wave func-
tion Ψ of a system consisting of two independent parts is the product 
of the wave functions Ψχ and Ψ% of these parts. Hence it is clear that, 
if the latter are of the same parity (i.e. both change sign, or both do 
not change sign, when the sign of all the coordinates is reversed), then 
the wave function of the whole system is even. On the other hand, if 
Ψι and Ψι are of opposite parity, then the function Wis odd. 

This rule can be expressed by the equation 

Ρ = PiP 2 , (19.6) 

where Ρ is the parity of the whole system, and Pi, P2 those of its 
parts. It can, of course, be generalised at once to the case of a system 
composed of any number of non-interacting parts. 

In particular, if we are concerned with a system of particles in a 
centrally symmetric field (the mutual interaction of the particles being 
supposed weak), the parity of the state of the whole system is 

ρ = ( _ i y i + / , + . . . . (19.7) 

We emphasise that the exponent here contains the algebraic sum of the 
angular momenta of the particles, and this is not in general the same 
as their "vector sum", i.e. the angular momentum L of the system. 

If a closed system disintegrates (under the action of internal forces), 
the total angular momentum and parity must be conserved. This 
circumstance may render it impossible for a system to disintegrate, 
even if this is energetically possible. 
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For instance, let us consider an atom in an even state with angular 
momentum L = 0, which is able, so far as energy considerations go, 
to disintegrate into a free electron and an ion in an odd state with the 
same angular momentum L = 0. It is easy to see that in fact no such 
disintegration can occur (it is, as we say, forbidden). For by virtue of 
the law of conservation of angular momentum, the free electron would 
also have to have zero angular momentum, and therefore be in an 
even state (P = (— 1)° = 1)); the state of the system ion + electron 
would then be odd, however, whereas the original state of the atom 
was even. 



C H A P T E R 3 

S C H R O D I N G E R ' S E Q U A T I O N 

§20. Schrodinger's equation 

The form of the wave function of a physical system is determined 
by its Hamiltonian, which is therefore of fundamental significance 
in the whole mathematical formalism of quantum mechanics. 

The form of the Hamiltonian for a free particle is established by 
the general requirements imposed by the homogeneity and isotropy 
of space and by Galileo's relativity principle. In classical mechanics, 
these requirements lead to a quadratic dependence of the energy of 
the particle on its momentum: Ε = ρ2/2m, where the constant m is 
called the mass of the particle (see Mechanics and Electrodynamics, 
§4). In quantum mechanics, the same requirements lead to a cor-
responding relation for the energy and momentum eigenvalues, these 
quantities being conserved and simultaneously measurable (for a free 
particle). 

If the relation Ε = p2\2m holds for every eigenvalue of the energy 
and momentum, the same relation must hold for their operators also: 

# = (l/2m) (20.1) 

Substituting here from (12.4), we obtain the Hamiltonian of a freely 
moving particle in the form 

Η = -(/ i 2 /2m)A, (20.2) 

where Δ = d2/dx2+d2/dy2+d2ldz2 is the Laplacian operator. 

67 
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The first term can be regarded as the operator of the kinetic energy 
and the second as that of the potential energy. The latter reduces to 
simple multiplication by the function U9 and it follows from the 
passage to the limiting case of classical mechanics that this function 
must coincide with the one which gives the potential energy in classical 
mechanics. In particular, the Hamiltonian for a single particle in an 
external field is 

Η = p 2/2m+ U(x, y,z)=- (h2/2m)A + U(x9 y, z), (20.5) 

where U(x, y, z) is the potential energy of the particle in the external 
field. 

Substituting the expressions (20.2) to (20.5) in the general equation 
(8.1), we obtain the wave equations for the corresponding systems. 
We shall write out here the wave equation for a particle in an external 
field: 

ih 9 Ψ/dt = - (h2/2m)A Ψ+ U(x, y, ζ) Ψ. (20.6) 

The equation (10.2), which determines the stationary states, takes the 
form 

(h2/2m)Ay)+ [E- U(x, y, ζ)] <ψ=0. (20.7) 

If we have a system of non-interacting particles, its Hamiltonian is 
equal to the sum of the Hamiltonians of the separate particles: 

(20.3) 

(the sufiix a is the number of the particle; Aa is the Laplacian operator 
in which the differentiation is with respect to the coordinates of the 
ath particle). 

In classical (non-relativistic) mechanics, the interaction of particles 
is described by an additive term in the Hamiltonian, the potential 
energy of the interaction C/(ri, r 2 , ...)» which is a function of the 
coordinates of the particles. By adding a similar function to the Ha-
miltonian of the system, the interaction of particles can be represented 
in quantum mechanics: 

(20.4) 
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The equations (20.6) and (20.7) were obtained by Schrodinger in 1926 

and are called Schrodinger's equations. 
For a free particle, Schrodinger's equation (20.7) has the form 

(Η2/2ηϊ)Αψ+Εψ = 0. (20.8) 

This equation has solutions finite in all space for any positive value 
of the energy E. For states with definite directions of motion, these 
solutions are eigenfunctions of the momentum operator (12.4) , with 
Ε = p2/2m. The complete (time-dependent) wave functions of such 
stationary states are 

Ψ = constant X (£'-p-r>. (20 .9) 

Each such function is a plane wave and describes a state in which 
the particle has a definite energy Ε and momentum p. This wave 
has a frequency E/h and wave vector k = p/A (the corresponding 
wavelength λ — 2jihjp is called the de Broglie wavelength of the par-
ticle).* 

The energy spectrum of a freely moving particle is thus found to be 
continuous, extending from zero to +«>. Each of these eigenvalues 
(except Ε = 0 ) is degenerate, and the degeneracy is infinite. For there 
corresponds to every value of E, different from zero, an infinite num-
ber of eigenfunctions (20.9) , differing in the direction of the vector p, 
which has a constant absolute magnitude. 

§21. The current density 

In classical mechanics, the velocity ν of a particle is related to its 
momentum by ρ = rm. The same relation holds between the corre-
sponding operators in quantum mechanics, as we should expect. 
This is easily shown by calculating the operator ν = f by the general 
rule (9.2) for the differentiation of operators with respect to time. 

t The idea of a wave related to a particle was first introduced by L. de Broglie 
in 1924. 

6 
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Using the expression (20.5) for the Hamiltonian, we can write 

ν = (//A) (Hr-rH) 

= ~(ih/2m)(Ar-TA). 

To determine the value of the commutator, we apply it to an arbitrary 
function ψ: 

A(xip) — τ(Αψ) = 2 V f 

But — ih V = p, so that 

ν = p/m. (21.1) 

Similar relations will clearly hold between the eigenvalues of the 
velocity and momentum, and between their mean values in any state. 

The velocity, like the momentum of a particle, cannot have a defi-
nite value simultaneously with the coordinates. But the velocity 
multiplied by an infinitely short time interval at gives the displace-
ment of the particle in the time at. Hence the fact that the velocity 
cannot exist at the same time as the coordinates means that, if the 
particle is at a definite point in space at some instant, it has no definite 
position at an infinitely close subsequent instant. 

Next, let us find the acceleration operator. We have 

ν = (i/h)(HY-yH) = (i/mh)(Hp-pH) = ( l /m) (£ /v -vU) . 

Here again, the operator can be evaluated by applying it to an arbitrary 
ψ: 

ϋ(νψ)-ν(υψ) =-(νΕ/)ψ. 

We therefore have 

m v = - v l 7 . (21.2) 

This operator equation is exactly the same in form as the equation 
of motion (Newton's equation) in classical mechanics. 

The integral J \ W\2dV, taken over some finite volume V, is the 
probability of finding the particle in this volume. Let us calculate the 
derivative of this probability with respect to time. We have 



Substituting here 

Η = Η* =-(h2/2m)A+ U(x, y, z) 

and using the identity 

ΨαΨ*-Ψ*αΨ = div (ΨνΨ*-Ψ*νΨ\ 

we obtain 
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where j denotes the vector 

j = (Μ/2ηι)(ΨνΨ*-Ψ*νΨ) = \(Ψ·*Ψ+Ψ1·Ψ*). (21.3) 

The integral of div j can be transformed by Gauss's theorem into an 
integral over the closed surface S which bounds* the volume V: 

(21.4) 

It is seen from this that the vector j may be called the probability current 
density vector or simply the current density. The integral of this 
vector over a surface is the probability that the particle will cross the 
surface during unit time. The vector j and the probability density 
IΨ12 satisfy the equation 

8 |?P| 2 /3/+divj = 0, (21.5) 

t The surface element df is, as usual, defined as a vector equal in magnitude to 
the area af of the element and directed along the outward normal. 

6* 
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where ν is the velocity of the particle, since substitution of this in 
(21.3) gives j = p//m?, i.e. a unit vector in the direction of the motion. 

§22. General properties of solutions of Schrddinger's equation 

The conditions which must be satisfied by solutions of Schrodinger's 
equation are very general in character. First of all, the wave function 
and its first derivatives must be single-valued and continuous in all 
space. The requirement of continuity of the derivatives represents the 
condition for the current density to be continuous. 

If the field U(x9 y, z) nowhere becomes infinite, then the wave func-
tion also must be finite in all space. The same condition must hold 
in cases where U becomes infinite at some point but does not do so 
too rapidly.1" 

Let Umin be the least value of the function U(x, y, z). Since the 
Hamiltonian is the sum of two terms, the operators of the kinetic 
energy (f) and of the potential energy, the mean value i? of the energy 
in any state is equal to the sum Γ + U. But all the eigenvalues of the 
operator Τ (which is the Hamiltonian of a free particle) are positive; 
hence the mean value T^O. Recalling also the obvious inequality 
Π > l/^jj, we find that Ε > Um\n- Since this inequality holds for any 

t To wit, not more rapidly than — 1/r2, where r is the distance from the point. 
I t can be shown that if U tends to — oo more rapidly than this, the "normal" state 
will correspond to a particle at the point r = 0, i.e. the particle "falls" to this 
point. 

which is analogous to the classical equation of continuity (Mechanics 
and Electrodynamics, §55). 

The wave function of free motion (the plane wave (20.9)) can be 
normalised so as to describe a flow of particles with unit current 
density (in which, on average, one particle crosses a unit cross-section 
of the flow per unit time). This function is then 

(21.6) 
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state, it is clear that it is valid for all the eigenvalues of the energy: 

En>Umin. (22.1) 

Let us consider a particle moving in an external field which vanishes 
at infinity; we define the function U(x,y, z), in the usual way, so that 
it vanishes at infinity. It is easy to see that the spectrum of negative 
eigenvalues of the energy will then be discrete, i.e. all states with 
Ε < 0 are bound states. For, in the stationary states of a continuous 
spectrum, which correspond to infinite motion, the particle reaches 
infinity (see §10); however, at sufficiently large distances the field may 
be neglected, the motion of the particle may be regarded as free, and 
the energy of a freely moving particle can only be positive. 

The positive eigenvalues, on the other hand, form a continuous 
spectrum and correspond to an infinite motion; for Ε > 0, Schro-
dinger's equation in general has no solutions (in the field concerned) 
for which the integral J \ ψ | 2 dV converges. 

In quantum mechanics, a particle in a finite motion may be found 
in those regions of space where Ε < U; the probability | ψ | 2 of finding 
the particle tends rapidly to zero as the distance into such a region 
increases, yet it differs from zero at all finite distances. Here there is a 
fundamental difference from classical mechanics, in which a particle 
cannot penetrate into a region where U ^ E. In classical mechanics 
the impossibility of penetrating into this region is related to the fact 
that, for Ε < U9 the kinetic energy would be negative, that is, the 
velocity would be imaginary, which is meaningless. In quantum me-
chanics, the eigenvalues of the kinetic energy are likewise positive; 
nevertheless, we do not reach a contradiction here, since, if by a 
process of measurement a particle is localised at some definite point 
of space, the state of the particle is changed, as a result of this process, 
in such a way that it ceases in general to have any definite kinetic 
energy. 

The above discussion may be illustrated by examples of one-di-
mensional motion, i.e. motion in a field U(x) that depends|on only 
one coordinate. The motion in the y- and z-directions is then free,, 
while that along the x-axis is governed by the one-dimensional 
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Schrodinger's equation 

(22.2) 

In the "potential well" shown in Fig. la, the motion with energy 
Ε < 0 is finite, and the corresponding energy spectrum is discrete. 

U(X) U(X) 

Λ IK 
J 

(a) (b) 
FIG. 1 

The energies Ε > 0, however, have a continuous spectrum, and the 
motion is infinite. Let us determine the asymptotic form of the wave 
functions at large distances χ in these two cases. Since U -*» 0 when 
x —• ± o o , the field U can be neglected in comparison with Ε in 
equation (22.2), so that 

(22.3) 

When Ε > 0, this is the equation of free motion in one dimension; 
its general solution is 

ψ = α^χ+αιβ-^*, k = (l/h)V(2mE), (22.4) 

i.e. is a superposition of two plane waves corresponding to motion 
to the right and to the left along the x-axis. Each energy level is doubly 
degenerate in accordance with the two possible motions in opposite 
directions. 

For energies Is < 0, only one of the two independent solutions of the 
second-order differential equation (22.2) is permissible, since it must 
satisfy the boundary conditions whereby the wave function for a 
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finite motion must tend to zero as χ -*> ± «>. At large distances, we 
again have equation (22.3), but its solution has the asymptotic form 

ψ = constantXe*** as χ -> ± ~ , κ = (l/h)V(2m\E\)9 (22.5) 

i.e. is exponentially damped in the classically inaccessible region (the 
other solution of (22.3) increases without limit as χ —- ± «>). 

So far as finite and infinite motion alone are concerned, both occur 
in the corresponding cases in classical and quantum mechanics (Ε < 0 
and Ε > 0 respectively) for a field of the type shown in Fig. la. This 
is no longer true, however, for the field shown in Fig. lb, where the 
well is surrounded by a "potential barrier" of finite height U0. The 
motion with Ε < 0 is again finite. In classical mechanics it would also 
be finite for motion within the well with 0 < Ε < UQ. In quantum 
mechanics, however, the motion is infinite for any energy Ε > 0, 
whether greater than or less than the height of the potential barrier. 
A particle (with Ε > 0) that is "inside the well" at a certain instant 
may later pass "though the barrier" and reach the region outside 
the well. 

Thus quantum mechanics allows infinite motion of particles under 
conditions where this could not occur in classical mechanics. The 
nature of this passage through the barrier (which will be further 
discussed in §28) is related to the above-mentioned fact that the wave 
function is not exactly zero within the classically inaccessible region. 

Schrodinger's equation, in the general form Ηψ = Εψ9 can be ob-
tained from the variational principle 

d$xp*(H-E)yaq=0. (22.6) 

Since ψ is complex, we can vary ψ and ψ* independently. Varying 
y>*9 we have 

ldy*{H-E)xpdq = 0, 

whence, because δψ* is arbitrary, we obtain the required equation 
Ηψ = Εψ. The variation of ψ gives nothing different; we obtain only 
the complex conjugate equation Η*ψ* = Εψ*. 

The variational calculus can be used to prove several important 
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results concerning the general properties of the wave functions of 
steady states of a particle. 

The wave function ψ0 of the normal state does not become zero 
(or, as we say, has no nodes) for any finite values of the coordinates. 
In other words, it has the same sign in all space. Hence, it follows that 
the wave functions ψη (n > 0) of the other stationary states, being 
orthogonal to ψο, must have nodes (if ψη is also of constant sign, the 
integral jip0y)n dV cannot vanish). 

Next, from the fact that ψ0 has no nodes, it follows that the normal 
energy level cannot be degenerate. For, suppose the contrary to be 
true, and let ψ0, ψ'0 be two different eigenfunctions corresponding to 
the level E0. Any linear combination c ^ 0 +

c V o will a l s ° t>e a n eigen-
function; but by choosing the appropriate constants c, c', we can 
always make this function vanish at any given point in space, i.e. we 
can obtain an eigenfunction with nodes. 

For a one-dimensional motion we have the more restrictive oscilla-
tion theorem: the wave function ψη(χ) of a discrete spectrum corre-
sponding to the (n+ l)th eigenvalue En (the eigenvalues being arranged 
in order of magnitude) vanishes η times (for finite values of x). 

§23. Time reversal 

Schrodinger's equation for the wave functions of stationary states 
is real, as are the conditions imposed on its solution. Hence its solu-
tions ψ can always be taken as real. The eigenfunctions of non-degen-
erate values of the energy are automatically real, apart from the 
unimportant phase factor. For ψ* satisfies the same equation as ψ, and 
therefore must also be an eigenfunction for the same value of the 
energy; hence, if this value is not degenerate, ψ and ψ* must be essen-
tially the same, i.e. they can differ only by a constant phase factor. 
The wave functions corresponding to the same degenerate energy level 
need not be real, however, but by a suitable choice of linear combina-
tions of them we can always obtain a set of real functions. 

The complete (time-dependent) wave functions Ψ are determined 
by an equation in whose coefficients i appears. This equation, how-
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ever, retains the same form if we replace / in it by —t and at the same 
time take the complex conjugate. Hence we can always choose the 
functions Ψ in such a way that Ψ and Ψ* differ only by the sign of 
the time, a result which we know already from formulae (10.1) and 
(10.3). 

As is well known, the equations of classical mechanics are un-
changed by time reversal, i.e. when the sign of the time is reversed. 
In quantum mechanics, the symmetry with respect to the two direc-
tions of time is expressed, as we see, in the invariance of the wave 
equation when the sign of t is changed and Ψ is simultaneously re-
placed by Ψ*. However, it must be recalled that this symmetry here 
relates only to the wave equation, and not to the concept of measure-
ment itself, which plays a fundamental part in quantum mechanics. 
The measuring process in quantum mechanics has a "two-faced" char-
acter: it plays different parts with respect to the past and the future. 
With respect to the past, it "verifies" the probabilities of the various 
possible results predicted from the state brought about by the pre-
vious measurement. With respect to the future, it brings about a new 
state (see also §37). Thus the very nature of the quantum-mechanical 
process of measurement involves a far-reaching principle of irre-
versibility. 

This irreversibility is of fundamental significance. Although the basic 
equations of quantum mechanics are in themselves symmetrical with 
respect to a change in the sign of the time (in this respect quantum 
mechanics does not differ from classical mechanics), the irreversibility 
of the process of measurement causes the two directions of time to be 
physically non-equivalent, i.e. creates a difference between the future 
and the past. 

§24. The potential well 

As a simple example of one-dimensional motion, let us consider 
motion in a square potential well as shown in Fig. 2 (it will here be 
more convenient to reckon the energy from the bottom of the well, 
not from the value of the potential energy at infinity). We shall inves-
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U(X) 

u 0 

Α Χ 
FIG. 2 

tigate the states of finite motion belonging to the discrete energy spec-
trum 0 < Ε < U0. 

In the region 0 < χ < α we have Schrodinger's equation 

V " + Jfcfy = 0 , k = (l/h)V(2mE) (24.1) 

(the prime denotes differentiation with respect to x), while in the region 
outside the well 

ψ"-9*ψ = 0, κ = (l /*)V[2w(i7o-£)]. (24.2) 

For χ = 0 and χ = a the solutions of these equations must be con-
tinuous together with their derivatives. 

The solution of equation (24.2) which vanishes at infinity is 

ψ = constantXe***; (24.3) 

the signs — and + in the exponent refer to the regions χ > a and 
χ < 0 respectively. Instead of the continuity of ψ and ψ' at the edge 
of the potential well, it is convenient to require the continuity of ψ 
and of its logarithmic derivative ψ'/ψ. Taking account of (24.3), we 
obtain the boundary condition in the form 

ψ'/ψ = :p κ. (24.4) 

We shall not pause here to determine the energy levels in a well of 
arbitrary depth U0 (see Problem 2), and shall analyse fully only the 
limiting case of infinitely high walls. 

When U0 °°, the function (24.3) is identically zero: the particle 
cannot, of course, reach a region where the potential is infinite. Thus 
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we have to find the solution of equation (24.1) with the boundary 
condition 

ψ = 0 for χ = 0 and a. (24.5) 

Such a solution may be sought as a "stationary wave" 
ψ = csin(kx+d). (24.6) 

The condition ψ = 0 for χ = 0 gives δ = 0, and then the condition 
at χ = a gives sin ka = 0, whence ka — (n-h l)jr, with « = 0, 1, 2, 

The energy levels of a particle in the well are therefore 

En = (p2h2\2ma2) (#ι+1)2, η = 0 ,1 ,2 , . . . . (24.7) 

In particular, the energy of the ground state is E0 = n2h2j2ma2. This 
result is in accordance with the uncertainty relation: when the un-
certainty of the coordinate is proportional to a, that of the momentum 
(and therefore the order of magnitude of the momentum itself) is 
proportional to hi a, and the corresponding energy is proportional to 
(h/a)2m. 

The normalised wave functions of the stationary states are 

sin — —. (24.8) 

In accordance with the oscillation theorem, the function ψη(χ) is zero 
at η points within the region of the motion (the boundaries of the 
region, in this case the points χ = 0 and a, are excluded from the 
zeros in applying the oscillation theorem). 

In a one-dimensional potential well of any shape, there is always 
at least one energy level, even if the well is very shallow (see, for in-
stance, Problem 2). This is, however, a specific property of the one-
dimensional case, and does not occur in the more realistic three-
dimensional well; if the depth | U\ of such a well is 

\U\ <zh2\ma2, (24.9) 

where a is the order of magnitude of the linear dimensions of the well, 
it has no discrete energy levels. Thus, if the well is not sufficiently 
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PROBLEM 2. Determine the energy levels for the potential well shown in Fig; 2. 
SOLUTION. The condition (24.4) at the edges of the well gives the equations 

k cot δ = - k cot (ka+δ) = κ s Vl(2m/n2)U0-k
2], 

or 
sin δ = - sin (ka+δ) = kh/V(2mU0). 

Eliminating <5, we obtain the transcendental equation 

ka = («+ 1)π- 2 sin" 1 [MIV(2mU0)]9 (1) 

where η = 0, 1, 2, . . . , and the values of the inverse sine are taken between 0 and 
| π . The roots of this equation determine the energy levels Ε = k2h2/2m. The 
values of η number the levels in order of increasing energy. The number of levels 
is finite if U0 is finite. 

Equation (1) can be written in a more convenient form by using the variable 
ξ and the parameter γ defined by 

| = y = Wa)V(2/mU0). 

When η is even, the resulting equation is 

c o s f = ± y { , (2) 

cf. (12.12). Substituting Ψ0(Χ) from (24.8) and calculating the integral, we obtain 
the required probability distribution: 

deep, it has no bound states, and the particle cannot be "captured" by 
the well. This is a purely quantum property; in classical mechanics, 
a particle can execute a finite motion in any potential well. The reason 
for the property will be explained in §32, and it will be proved by 
direct calculation for the case of a spherically symmetric well in §30, 
Problem 1. 

P R O B L E M S 

PROBLEM 1. Determine the probability distribution for various values of the 
momentum for the normal state of a particle in one-dimensional motion in an 
infinitely deep square potential well. 

SOLUTION. The probability of momentum values ρ lying in the range dp is 
\a(p) |2 dp, where a(p) in the one-dimensional case is 
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and the roots for which tan f > 0 must be taken. When η is odd, we have 

s i n £ = + y | , (3) 

and the roots for which tan ξ < 0 must be taken. 
In particular, for a shallow well in which U0 <c fP/ma2, we have γ »> 1 and 

equation (3) has no root. Equation (2) has one root (with the upper sign on the 
right-hand side),ί as 1 /2y 3. Thus the well contains only one energy level, 

EQ = 2P&lmtfi ~ UQ- (mrf/ln^Ul, 

which is near the top of the well. 
PROBLEM 3. L^terrnine the energy levels of a particle moving in a rectangular 

"potential box" with sides a, b, c: U = 0 inside the box and U = oo outside it. 
SOLUTION. The free motion of the particle within the box takes place indepen-

dently in three directions. The energy levels are therefore given simply by the sums 
of three exoressions like (24.Ί}: 

§25. The linear oscillator 

Let us consider a particle executing small oscillations in one di-
mension (what is called a linear oscillator). The potential energy of 
such a particle is | m o ) ¥ , where ω is, in classical mechanics, the char-
acteristic (angular) frequency of the oscillations (see Mechanics and 
Electrodynamics, §17). Accordingly, the Hamiltonian of the oscilla-
tor is 

Η = | p 2 / m + | m c o 2 x 2 . (25.1) 

Since the potential energy becomes infinite for χ = ± o o , the particle 
can have only a finite motion, and the energy eigenvalue spectrum is 
entirely discrete. 

Let us determine the energy levels of the oscillator, using the matrix 
method.1" We shall start from the "equations of motion" in the form 

t This was done by Heisenberg in 1925, before Schrodinger's discovery of the 
wave equation. 

The intervals between the levels tend to zero as the size of the well increases. The 
wave functions of the stationary states are 

where the axes of x, y, ζ are along the sides of the box. 
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(21.2); in this case they give 

*+co 2x = 0. (25.2) 

In matrix form, this equation reads 

(χ)ηιη+ω2Χηιη = 0. 

For the matrix elements of the acceleration we have, according to 
(11.8), (x)mn = uojp)^ = - i x m , Hence we obtain 

{ωΙίη—ω2)χηιη = 0. 

Hence it is evident that all the matrix elements xmn vanish except those 
for which a>mn = ω or comn = — ω. We number all the stationary states 
so that the frequencies ±co correspond to transitions η -+• n+ 1, i.e. 
ω η ,«τ ι ~ — ω - Then the only non-zero matrix elements are x„t„±1. 

We shall suppose that the wave functions ipn are taken real. Since 
χ is a real quantity, all the matrix elements xmn are real. The Hermitian 
condition (11.10) now shows that the matrix xmn is symmetrical: 

To calculate the matrix elements of the coordinate which are differ-
ent from zero, we use the commutation rule 

xx—xx = — ih/m, 

written in the matrix form 

(XX)mn - (Xx)mn = ~ (ih/m)dmn . 

By the matrix multiplication rule (11.12) we hence have for m = η 

ΐΣ(ωηιΧηιΧΐη-ΧηΐωΐηΧΐη) = 2ΐ^ωηιΧ% =-ih/m. 
f l 

In this sum, only the terms with / = n± 1 are different from zero, so 
that we have 

(*«+!, nf- {Xn, n-l)2 = ^2*10). (25.3) 

From this equation we deduce that the quantities (xn+li „)2 form an 
arithmetic progression, which is unbounded above, but is certainly 
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bounded below, since it can contain only positive terms. Since we 
have as yet fixed only the relative positions of the numbers η of the 
states, but not their absolute values, we can arbitrarily choose the 
value of η corresponding to the first (normal) state of the oscillator, 
and put this value equal to zero. Accordingly x 0 _ x must be regarded 
as being zero identically, and the application of equations (25.3) with 
η = 0, 1, . . . successively leads to the result 

(x„y w _ i ) 2 = nh\2mu>. 

Thus we finally obtain the following expression for the matrix elements 
of the coordinate which are different from zero: 

Xn, n - 1 = Xn-1, η = \/(nhj2m(u). (25.4) 

The matrix of the operator Η is diagonal, and the matrix elements 
Hnn are the required eigenvalues En of the energy of the oscillator. 
To calculate them, we write 

2)nn + u>*(x*)nn] 

] ίωηιΧηιίωΐηΧΐη + ω2 Σ XnlXln J 

(ω2+ω%ι)χΙί. 
R 

In the sum over /, only the terms with / = n± 1 are different from zero; 
substituting (25.4), we obtain 

En = (/ι+τ)Λω, η = 0, 1, 2, . . . . (25.5) 

Thus the energy levels of the oscillator lie at equal intervals of hco 
from one another. The energy of the normal state (n = 0) is γ#ω; we 
call attention to the fact that it is not zero. 

The result (25.5) can also be obtained by solving Schrodinger's 
equation. For an oscillator, this has the form 

(25.6) 
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Here it is convenient to introduce, instead of the coordinate x, the 
dimensionless variable ξ by the relation 

ξ = V(rna)/h)x. (25.7) 

Then we have the equation 

ψ"+[(2Ε/ήω)-ξ2]ψ = 0; (25.8) 

here the prime denotes differentiation with respect to ξ. 
For large £, we can neglect 2Ε/ήω in comparison with | 2 ; the equa-

tion ψ" = ξ2ψ has the asymptotic integrals ψ = e ± i $ t (for differentia-
tion of this function gives ψ" = ξ^ψ on neglecting terms of order less 
than that of the term retained). Since the wave function %p must re-
main finite as I — ± «>, the index must be taken with the minus sign. 
It is therefore natural to make in equation (25.8) the substitution 

ψ = e-*i*xtf). (25.9) 

For the function χ(ξ) we obtain the equation (with the notation 
(2Ε/Λω)-1 =2n) 

χ"-2ξχ' + 2ηχ=0; (25.10) 

the function χ must be finite for all finite | , and for I — ± oo must not 
tend to infinity more rapidly than every finite power of ξ (in order 
that the function ψ should tend to zero). 

We shall seek a solution of equation (25.10) as a series 

(25.11) 

Substitution of this gives 

In the first sum, we rename the variable of summation, replacing s by 
s+2: 

[as.,2(s+l)(s+2)+2(n-s)as]£s = 0. 
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between the coefficients of successive terms in the series (25.11). It is 
seen, first of all, that the series contains only odd or only even powers 
of | . In order to satisfy the condition stated above, the series must 
contain only terms with finite powers, i.e. it must stop at some finite s. 
From (25.12), η must therefore be a positive integer; the series then 
stops at s = n, becoming a polynomial of degree n. This is the result 
(25.5) already obtained for the energy eigenvalues. 

We shall give the explicit form of the wave function only for the 
ground state of the oscillator. When η = 0, the polynomial reduces 
to a constant. Determining this so that the wave function satisfies the 
normalisation condition 

o o 

J ψ&χ)άχ = 1, 
— o o 

we find 

ψ 0 ( χ ) = (mco/jr/z)1'4 e~^x^h. (25.13) 

This function has no zeros for finite x, which is as it should be. 

P R O B L E M 

Determine the probability distribution of the various values of the momentum, 
in the normal state of the oscillator. 

SOLUTION. A S in §24 , Problem 1, we calculate the integral 

The substitution x + ip/τηω = ζ reduces this to a Poisson integral, and the 
result is 

If this is identically satisfied, the coefficient of each power of ξ must 
be zero. Thus we find the recurrence relation 

(25.12) 
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§26. The quasi-classical wave function 

If the de Broglie wavelengths of particles are small in comparison 
with the characteristic dimensions which determine the conditions 
of a given problem, then the properties of the system are close to 
being classical. In §6 we have already mentioned the general form of 
the wave functions in such quasi-classical cases, and in §§12 and 14 this 
form has been used to derive the quantum-mechanical operators of 
fundamental physical quantities. We shall now investigate more closely 
how the passage to the quasi-classical limit takes place in Schrodinger's 
equation. 

It has been noted in §6 that the transition from quantum mechanics 
to classical mechanics can be formally described as a passage to the 
limit h 0. In the quasi-classical case, therefore, h may be regarded 
as a small parameter, and the expression 

in which a and S are assumed independent of can be regarded as 
the first term in an expansion of the wave function in powers of that 
parameter. If (26.1) is put in the form exp {(iS+h log a)/h}9 we see 
that it corresponds to the first two terms in the expansion of the ex-
ponential. In the subsequent calculations, therefore, only the first two 
powers of h need be retained. 

For simplicity, we shall refer to a single particle in an external field. 
Substituting (26.1) in Schrodinger's equation (20.6), differentiating and 
retaining only the first two powers of ft, we get 

Equating the powers of h separately to zero, we obtain two equations: 

Ψ = αέ*ι*9 (26.1) 

(26.3) 

(26.4) 
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The first of these is the Hamilton-Jacobi equation for the action S of 
a particle, as it should be (see Mechanics and Electrodynamics, §31). 
Equation (26.4), on multiplication by 2a, can be rewritten in the form 

This equation has an obvious physical meaning: | Ψ\2 = a2 is the prob-
ability density for finding the particle at some point in space; vS/m = 
p/m is the classical velocity ν of the particle. Hence equation (26.5) 
is simply the equation of continuity, which shows that the probability 
density "moves" according to the laws of classical mechanics with 
the classical velocity ν at every point. 

For stationary states, i.e. for a given energy E, the action is 

S = -Et-hS0(x,y,z), (26.6) 

where So is a function of the coordinates (called the "abbreviated 
action") and satisfies the equation 

-A-(s7So)2+U = E. (26.7) 

The amplitude a of the wave function for the stationary states is 
independent of time, and satisfies the equation 

d iv(a 2 vS) = 0. (26.8) 

The quasi-classical function for stationary states will be given ex-
plicitly for one-dimensional motion of a particle in a field U(x). Then, 
in equation (26.7), (vSO)2 = (dSo/dx)2, and the solution is 

So = ± jp dx, p(x) = y/\2m(E- U)]. (26.9) 

The integrand p{x) is just the classical momentum of the particle, ex-
pressed as a function of the coordinate. From (26.8) we then have 

d(a2p)/dx = 0, a2p = constant, 

so that a = constant/V/>- Thus the general solution of Schrodinger's 

7* 

(26.5) 
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where C± and C 2 are constant coefficients. 
The presence of the factor \[y/p in the wave function has a simple 

explanation. The probability of finding the particle at a point with 
coordinate between χ and x+dx is determined by \ψ\2, and is there-
fore essentially proportional to I/p. This is as we should expect for 
a "quasi-classical particle", since in classical motion the time spent 
by the particle in the segment dx is inversely proportional to its 
velocity (or momentum). 

In the "classically inaccessible" regions of space, where Ε < U(x\ 
the function p(x) is purely imaginary, so that the exponents are real. 
The wave function in these regions can be written in the form 

equation is 

(26.10) 

(26.11) 

Let us examine more closely the condition for these results to be 
valid. In equation (26.2) the terms in h must in fact be small in com-
parison with the others. We may compare, for example, the terms 

The condition for the latter to be small in comparison with the former 
\s(fi\p*)\dp\dx\ <zc 1, or 

|d*/dx| « 1 , (26.12) 

where % = λ/2π and λ(χ) = 2nh/p(x) is the de Broglie wavelength of 
the particle, expressed as a function of χ by means of the classical 
function /?(x). Thus we have a quantitative criterion of quasi-classical-
ity: the wavelength of the particle must vary only slightly over a di-
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stance of the order of this wavelength. The formulae derived above 
become inapplicable in regions of space where this condition is not 
satisfied. 

The quasi-classical approximation is clearly inapplicable near turn-
ing points, i.e. near points where the particle, according to classical 
mechanics, would stop and begin to move in the opposite direction. 
These points are given by the equation p(x) = 0. As ρ 0, the de 
Broglie wavelength tends to infinity, and hence cannot possibly be 
supposed small. 

§27. Bohr and Sommerfeld's quantisation rule 

The results which we have obtained in §26 enable us to derive the 
condition which determines the quantum energy levels in the quasi-
classical case. To do this we consider a finite one-dimensional motion 

U(x) 
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of a particle in a potential well: the classically accessible region 
a χ «s b is bounded by two turning points (Fig. 3). t 

The boundary conditions for the wave function consist in the re-
quirement that it is damped in each of the classically inaccessible re-

t In classical mechanics, a particle in such a field would execute a periodic 
motion with period (time taken in moving from χ = a to χ = b and back) 

b b 
T= 2 J όχ/ν = 2m j* dx/p, 

a a 

where ν is the velocity of the particle. 
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gions I and III, becoming zero as χ ± «>. We know also that in 
these regions the general solution of Schrodinger's equation has the 
form (26.11), and in region II it is (26.10). From these conditions it 
would be possible to determine the constant coefficients in the solu-
tion for each region by joining them at the boundaries χ — a and 
χ = b. But this joining cannot be achieved directly, because near such 
points the quasi-classical approximation used to calculate (26.10) and 
(26.11) becomes invalid. 

The difficulty is eliminated if we use only the crude approximation 
of making the wave function vanish at χ = a and χ = b, not at in-
finity. 

In the classical limit, these points are the absolute limits of the 
motion, and the particle cannot pass beyond them. In the quasi-clas-
sical approximation, although the particle can penetrate into classically 
inaccessible regions, the wave functions are damped very rapidly 
there; this is the basis for the change of boundary conditions men-
tioned in the previous paragraph. 

The boundary condition ψ = 0 for χ = a gives for the wave func-
tion in region II the expression 

Similarly, substituting the condition ψ = 0 at χ = b, we have 

If these two expressions are the same throughout the region, the sum 
of their phases (which is a constant) must be an integral multiple 
ofjr: 

(27.1) 

a 

(27.2) 
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with C = ( - I f C . This may be also written 

ρ dx = 2nhn, (27.3) 

where the integral is taken over the whole period of the classical mo-
tion of the particle. This is the condition which determines the sta-
tionary states of the particle in the quasi-classical case. It corresponds 
to Bohr and Sommerfeld's quantisation rule in the old quantum 
theory. 

Since h is a small parameter in the quasi-classical approximation, 
the expression on the left of equation (27.2) is large. The same is 
therefore true of the integer n. The phase of the wave function (27.1) 
varies from 0 at χ = a to ηπ at χ = b, and the sine therefore vanishes 
72—1, or approximately «, times in this interval. Thus the integer η 
represents the number of zeros of the wave function. According to the 
oscillation theorem (§22) it is therefore a quantum number that iden-
tifies the successive quantum energy levels.t 

The fact that the quasi-classical approximation corresponds to a 
large value of the quantum number η has a simple intuitive explana-
tion. The distance between adjacent zeros of the wave function is 
evidently equal, in order of magnitude, to the de Broglie wavelength. 
For large n9 this distance is small, being approximately (b—a)jn\ the 
wavelength is therefore small in comparison with the dimensions of 
the region of motion. 

Starting from the quantisation rule (27.3), we can ascertain the 
general nature of the distribution of levels in the energy spectrum. 
Let AE be the distance between two neighbouring levels, i.e. levels 
whose quantum numbers η differ by unity. Since AE is small (for large 
ri) compared with the energy itself of the levels, we can write, from 

t A more exact analysis, using the exact (not quasi-classical) solutions of 
Schrodinger's equation near the turning points, gives / i -h | instead of the integer 
η in (27.2) and (27.3). It is also found that the number of zeros of the wave func-
tion at finite distances in the entire region of the motion is precisely n. 

(27.3), 
ΔΕ$(βρ/ΒΕ)άχ = 2nh. 
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But for classical motion dE/dp = v, the velocity of the particle, so that 

f(dp/BE)dx = jdx/v = T. 

Hence we have 
ΔΕ = 2nh/T = Λω. (27.4) 

Thus the distance between two neighbouring levels is hot. The fre-
quencies ω may be regarded as approximately the same for several 
adjacent levels (the difference in whose numbers η is small compared 
with η itself). Hence we reach the conclusion that, in any small range 
of a quasi-classical part of the spectrum, the levels are equidistant, at 
intervals of hco. This result could have been foreseen, since, in the 
quasi-classical case, the frequencies corresponding to transitions be-
tween different energy levels must be integral multiples of the classical 
frequency ω. 

It is of interest to investigate what the matrix elements of any phys-
ical quantity /become in the limit of classical mechanics. To do this, 
we start from the fact that the mean value / in any quantum state 
must become, in the limit, simply the classical value of the quantity, 
provided that the state itself gives, in the limit, a motion of the particle 
in a definite path. A wave packet (see §6) corresponds to such a state; 
it is obtained by superposition of a number of stationary states with 
nearly the same energy. The wave function of such a state is of the 
form 

η 

where the coefficients an are noticeably different from zero only 
in some range An of values of the quantum number η such that 
1 « A « « n ; the numbers η are supposed large, because the stationary 
states are quasi-classical. The mean value of / is, by definition, 

or, replacing the summation over η and m by a summation over η and 
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The sum obtained is in the form of an ordinary Fourier series. Since 
/ must, in the limit, coincide with the classical quantity f(t), we arrive 
at the result that the matrix elements fmn in the limit become the 
components fm_n in the expansion of the classical function f(t) as a 
Fourier series. 

The relation (27.3) can also be interpreted in another manner. The 
integral <J> ρ dx is the area enclosed by the closed classical phase 
trajectory of the particle (i.e. the curve in the /?x-plane, which is the 
phase space of the particle). Dividing this area into cells, each of area 
2nh, we have η cells altogether; n, however, is the number of states 
with energies not exceeding the given value (corresponding to the 
phase trajectory considered). Thus we can say that, in the quasi-
classical case, there corresponds to each quantum state a cell in phase 
space of area 2nh. In other words, the number of states belonging to 
the volume element ApAx of phase space is 

ApAx/2nh. (27.6) 

If we introduce, instead of the momentum, the wave number k = p/h> 
this number can be written 

Ak Αχ/2π. 

the difference m—n = s, 

where we have put com„ = in accordance with (27.4). 
The matrix e l e m e n t s ^ calculated by means of the quasi-classical 

wave functions decrease rapidly in magnitude as the difference m—n 
increases, though at the same time they vary only slowly with η 
itself (m—n being fixed). Hence we can write approximately 

where we have introduced the notation fs = f-+S} -, η being some mean 
value of the quantum number in the range An. But £ | an |

2 = 1; hence 

(27.5) 
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It is, as we should expect, the same as the familiar expression for the 
number of proper vibrations of a wave field (see Mechanics and Electro-
dynamics, §78). 

The important concept of cells in phase space is valid for any quasi-
classical motion, and not only for the one-dimensional motion dis-
cussed here. This is clear from the relationship noted above with the 
number of proper vibrations of the wave field in a given volume of 
space. In the general case of a system with s degrees of freedom, there 
are 

Δ#ι . . . Aqs ΔΡι . . . Apsl(2jih)s (21 J) 

quantum states in a volume element in phase space. In particular, a 
free motion in a sufficiently large volume Ω is always quasi-classical.1" 
The number of quantum states for such a motion with momentum 
components in specified ranges Δρχ, Δργ, Δρζ is 

Ω ·Δρχ Apy Apz/(2nhf. (27.8) 

The concept of a particle moving in a large but bounded region Ω is 
sometimes used in order to deal with a discrete instead of a continuous 
spectrum, thus simplifying the formulae; this procedure will be used 
in Part II. For motion in a bounded volume, the eigenvalues of the 
momentum components take a discrete series of values, the intervals 
between which are inversely proportional to the linear dimensions of 
the region, and tend to zero as these increase. The number density 
of these states is given by (27.8). The normalised wave functions 
(plane waves) of the stationary states of a discrete spectrum of this 
kind have the form 

(27.9) 

and are said to be normalised to one particle in the volume Ω. 

t Where a "normalisation volume" is needed, it will always be denoted by Ω. 
This is a fictitious quantity, which never appears in the final physical results, and 
is introduced only to facilitate the discussion. 
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§28. The transmission coefficient 

Let us consider the motion of a particle in one dimension in a field 
of the type shown in Fig. 4: U(x) increases monotonically from one 
constant limit (U = 0 as χ — — o o ) to another (U = U0 as χ — + °°). 
According to classical mechanics, a particle of energy is < U0 moving 
in such a field from left to right, on reaching such a "potential wall", is 
reflected from it, and begins to move in the opposite direction; if, 
however, Ε > C/0, the particle continues to move in its original di-
rection, though with diminished velocity. In quantum mechanics, a 
new phenomenon appears: even for Ε > U0, the particle may be 
"reflected" from the potential wall. The probability of reflection must 
in principle be calculated as follows. 

,U(X) 

FIG. 4 

Let the particle be moving from left to right. For large positive values 
of x, the wave function must describe a particle which has passed 
"above the wall" and is moving in the positive direction of x, i.e. 
it must have the asymptotic form 

for χ - o o , ψ ^ A eik*x, where k2 = (l/hW[2m(E- UQ)] 

(28.1) 

and A is a constant. To find the solution of Schrodinger's equation 
which satisfies this boundary condition, we calculate the asymptotic 
expression for χ - o o ; it is a linear combination of the two solu-
tions of the equation of free motion, i.e. it has the form 

for χ — - o o , ψ ^ e^IX+Be-***, where kx = \^(2mE)/h. 

(28.2) 
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The first term corresponds to a particle incident on the "wall" (we 
suppose ψ normalised so that the coefficient of this term is unity); the 
second term represents a particle reflected from the "wall". The cur-
rent density in the incident wave is kx, in the reflected wave kx | Β | 2, and 
in the transmitted wave k2 \ A | 2 . We define the transmission coefficient D 
as the ratio of the current density in the transmitted wave to that in 
the incident wave: 

D = (k2/kx)\A\\ (28.3) 

Similarly we can define the reflection coefficient R as the ratio of the 
density in the reflected wave to that in the incident wave. Evidently 
R = l-D: 

R^\B\z = l-(k2/kx)\A\* (28.4) 

(this relation between A and Β is automatically satisfied). 
If the particle moves from left to right with energy Ε < t/ 0, then k2 

is purely imaginary, and the wave function decreases exponentially 
beyond the wall. The reflected current is equal to the incident one, 
i.e. we have total reflection of the particle from the potential wall. 

A similar treatment can be used for passage through a potential 
barrier, i.e. a region of space in which the potential energy exceeds the 
total energy of the particle (Fig. 5 shows a one-dimensional barrier). 
It has already been mentioned in §22 that in quantum mechanics a 
particle reaching the barrier has a non-zero probability of passing 
"through" it. The permeability of the barrier to incident particles may 
be represented by a transmission coefficient, again defined as the ratio 
of the transmitted current density to the incident current density. 

This coefficient can be estimated in a general form for a one-dimen-
sional barrier satisfying the quasi-classical condition. According to 
this condition (see (26.12)), the "classical momentum" p(x) of the 
particle, and therefore the potential energy U(x) itself, must vary 
sufficiently slowly with x. This means that a quasi-classical potential 
barrier must have only a small slope; it must therefore be wide, and 
so the transmission coefficient is small in the quasi-classical case. 

Let the particle be incident on the barrier from the left (from re-
gion I in Fig. 5). In the "classically inaccessible" region II, the wave 
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function decreases exponentially from left to right: 

\p\ =V[2m(U-E)] 

(cf. (26.11)); the relatively slowly varying non-exponential factors are 
omitted here and henceforward. At the other side of the barrier 
(x = b\ the wave function is thus attenuated in the ratio 

in comparison with its value in the incident wave at χ = a. The current 
density is proportional to the squared modulus of the wave function 
(again ignoring slowly varying factors). The ratio of the current trans-
mitted through the barrier to the incident current is therefore 

(28.5) 

This estimate of the barrier transmission coefficient remains valid 
in the more realistic cases where the barrier is quasi-classical over much 
but not all of its extent. Such cases include those in which the poten-
tial-energy curve has a low slope only on one side, and on the other 
side is so steep that the quasi-classical approximation is invalid. The 
general condition for formula (28.5) to be valid is that the exponent 
must be large. 
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P R O B L E M S 

PROBLEM 1. Determine the reflection coefficient of a particle from a rectangular 
potential wall (Fig. 6); the energy of the particle Ε > t/ 0 . 

U(X) 

FIG. 6 

SOLUTION. Throughout the region χ > 0, the wave function has the form 
(28.1), while in the region χ < 0 its form is (28.2). The constants A and Β are 
determined from the condition that ψ and άψΙάχ are continuous at χ = 0: 

1+B = A, W - 5 ) = M . 
whence 

A = 2&1/(λ:1+λ:2), Β = (kx~ k2)/(k1-\-k2). 

The reflection coefficient* is (28.4) 

t In the limiting case of classical mechanics, the reflection coefficient must be-
come zero. The expression obtained here, however, does not contain the quantum 
constant at all. This apparent contradiction is explained as follows. The classical 
limiting case is that in which the de Broglie wavelength of the particle λ ~ h/p 
is small in comparison with the characteristic dimensions of the problem, i.e. the 
distances over which the field U(x) changes noticeably. In the schematic example 
considered, however, this distance is zero (at the point χ = 0), so that the passage 
to the limit cannot be effected. 

For Ε = U0 (k2 = 0), R becomes unity, while for E^-oo it tends to zero as (U0/ 
/4E)\ 

PROBLEM 2. Determine the transmission coefficient for a rectangular potential 
barrier (Fig. 7). 
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U 0 

α 
FIG. 7 

SOLUTION. Let Ε be greater than U0, and suppose that the incident particle is 
moving from left to right. Then we have for the wave function in the different 
regions expressions of the form 

for χ < 0, ψ = eik*x+A e~ikix, 

for 0 < χ < Λ, y> = Β eih*x+B' e~ik*x, 

for * > <z, ψ = C eaix 

(on the side JC > A there can be only the transmitted wave, propagated in the posi-
tive direction of x). The constants A, B, B' and C are determined from the condi-
tions of continuity of ψ and άψ/άχ at the points χ = 0 and a. The transmission 
coefficient is determined as D — kx |C| 2/&i = | C | 2 . On calculating this, we 
obtain 

For Ε < £/0, fc2 is a purely imaginary quantity; the corresponding expression 
for D is obtained by replacing k2 by ix2, where hx2 = y/[2m(U0-E)]: 

PROBLEM 3. Determine from formula (28.5) the transmission coefficient for the 
potential barrier shown in Fig. 8: U(x) = 0 for χ < 0, U(x) = U0-Fx for χ > 0. 

SOLUTION. A simple calculation gives the result 

PROBLEM 4. Determine the probability that a particle (with zero angular mo-
mentum) will emerge from a centrally symmetric potential well with U(r) = 
= - U0 for r < r 0, i/(r) = α/r (Coulomb repulsion) for r > r 0 (Fig. 9). 

. U(x) 
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U(r) 1 

r 

t Here we use the fact that a problem of motion of a particle with zero angular 
momentum in a central field reduces to a problem of one-dimensional motion 
with the same potential energy (see §30). 

100 Schrodinge? s Equation §28 

FIG. 9 

SOLUTION. According to (28.5)t 

Evaluating the integral, we finally obtain 
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In the limiting case r0 0, this formula becomes 

w ^ e-{n*lh)y/(pnlE) = 6~2ηφν 

These formulae are applicable when the exponent is large, i.e. when FX/hv » 1. 

§29. Motion in a centrally symmetric field 

The problem of the motion of two interacting particles can be 
reduced in quantum mechanics to that of one particle, as can be done in 
classical mechanics (see Mechanics and Electrodynamics, §11). The 
Hamiltonian of the two particles (of masses mi, m 2 ) interacting in 
accordance with the law U(r) (where r is the distance between the 
particles) is of the form 

(29.1) 

where Δ ι and Δ2 are the Laplacian operators with respect to the 
coordinates of the particles. Instead of the radius vectors ri and r 2 of 
the particles, we introduce new variables R and r: 

r = r 2 - r i , R = (m1r1+m2r2)/(m1+m2); (29.2) 

r is the vector of the distance between the particles, and R the radius 
vector of their centre of mass. A simple calculation gives 

(29.3) 

where A R and Δ are the Laplacian operators with respect to the 
components of the vectors R and r respectively, m i + m 2 is the total 
mass of the system, and m = m i m 2 / ( m i + m 2 ) is the reduced mass. 
Thus the Hamiltonian falls into the sum of two independent parts. 
Hence we can look for ψ(τι, r2) in the form of a product 0(R) y>(r), 
where the function 0(R) describes the motion of the centre of mass 
(as a free particle of mass mi-f-m 2), and ^(r) describes the relative 
motion of the particles (as a particle of mass m moving in the central 
field U(r)). 

8 
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We note that this equation does not contain the value of l2 = m at all, 
in accordance with the (2/+ l)-fold degeneracy of the levels with re-
spect to the direction of the angular momentum, with which we are al-
ready familiar. 

Schrodinger's equation for the motion of a particle in a central 
field is 

Δψ+(2ιη/&) [Ε- U(r)]xp = 0. (29.4) 

Using the familiar expression for the Laplacian operator in spherical 
polar coordinates, we can write this equation in the form 

(29.5) 

If we introduce here the operator l 2 (14.15) of the squared angular 
momentum we obtain 

(29.6) 

The angular momentum is conserved during motion in a central 
field. We shall consider stationary states in which the angular momen-
tum and its component have definite values / and m. The specification 
of these values determines the angular dependence of the wave func-
tions. Accordingly, we seek solutions of equation (29.6) in the form 

y = Λ ( Γ ) 7 / μ ( Μ ) . (29.7) 

The eigenfunction of the angular momentum satisfies the equation 
l2Ylm = /(/+ l )^ / m , and we therefore obtain for the radial function 
R(r) the equation 

(29.8) 
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equation (29.8) is brought to the form 

= 0. (29 .10) 

We shall assume that the potential energy U(r\ if it becomes infinite 
as r — 0, does so less rapidly than 1 /r 2, i.e. 

r2U(r)-+0 as r - 0 . (29 .11) 

This excludes the possibility of the particle's "falling" to the centre 
(in a field for which U — — » as r 0 ) , already mentioned in the 
footnote to §22. Then the wave function, and therefore the probability 
density \ip\2, remain finite in all space, including the point r — 0 . 
Hence it follows that χ = rR must vanish for r = 0 : 

χ(0) = 0 . (29 .12) 

Equation (29.10) is formally identical with Schrodinger's equation 
for one-dimensional motion in a field of potential energy 

(29.13) 

in which the second term may be called the centrifugal energy. Thus the 
problem of motion in a central field reduces to that of one-dimensional 
motion in a region bounded on one side (the boundary condition for 
r = 0) . The normalisation condition for the functions χ is also "one-
dimensional": 

o o o o 

J \R\2r2dr = $ \x\2dr = l. (29.14) 
ο ο 

The solution of equation (29.10) with the boundary condition 
(29.12) is fully determined by specifying the (permissible) value of E. 

Let us investigate the radial part of the wave functions. By the 
substitution 

m = %(r)/r (29 .9 ) 

8* 
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Hence, for motion in a central field, the state is completely determined 
by the values of Ε, I and m. In other words, the energy, the angular 
momentum and the component of the angular momentum together 
form a complete set of physical quantities for such a motion. 

The reduction of the problem of motion in a central field to a one-
dimensional problem enables us to apply the oscillation theorem (see 
§22). We arrange the eigenvalues of the energy (discrete spectrum) for 
a given / in order of increasing magnitude, and give them numbers 
/2R, the lowest level being given the number nr = 0. Then nr determines 
the number of nodes of the radial part of the wave function for finite 
values of r (excluding the point r = 0). The number nr is called the 
radial quantum number. The number / for motion in a central field is 
sometimes called the azimuthal quantum number, and m the magnetic 
quantum number. 

There is an accepted notation for states with various values of the 
angular momentum / of the particle: they are denoted by Latin letters, 
as follows: 

7 = 0 1 2 3 4 5 6 7 . . . 

s ρ df g h ι k ... 

Let us determine the form of the radial function near the origin. 
For small r, we seek R(r) in the form R = constantXr5. Substituting 
this in the equation 

d(r 2 dR/dr)/dr-l(l+ l)R = 0, 

which is obtained from (29.8) by multiplying by r% and taking the limit 
as r 0, using (29.11), we find 

s(s+l) = /(/+1). 
Hence 

s = I or s=-(l+l). 

The solution with s =— (/-f-1) does not satisfy the necessary condi-
tions; it becomes infinite for r = 0. Thus the solution with s = I re-
mains, i.e. near the origin the wave functions of states with a given / 
are proportional to rl: 

Ri ^ constant Xr 7 . (29.16) 
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The probability of a particle's being at a distance between r and r+dr 
from the centre is determined by the value of r2 \R\2 and is thus pro-
portional to r 2 ( / + 1 ) . We see that it becomes zero at the origin the more 
rapidly, the greater the value of /. 

§30. Spherical waves 

The plane wave (20.9) describes a stationary state of a free particle 
in which the particle has a definite momentum ρ (and energy Ε = ρ2/ 
/2m). Let us now consider stationary states (spherical waves) in which 
the particle has a definite value, not only of the energy, but also of 
the absolute value and component of the angular momentum. In-
stead of the energy, it is convenient to introduce the wave number 

k =V(2mfi)/ft. (30.1) 

The wave function of a state with angular momentum / and pro-
jection thereof m has the form 

y>kim=Rki(r)Ylm(d,<l>\ (30.2} 

where the radial function is determined by the equation 

(30.3> 

(equation (29.8) with U(r) = 0). The wave functions y)klm for a spec-
trum continuous as regards k satisfy the conditions of normalisation 
and orthogonality: 

J Wk'Vm'Wkim dV = dwdmm>6(kf-k). 

The orthogonality for different /, /' and m, rri is ensured by the angular 
functions. The radial functions must be normalised by the condition 

o o 

I r*RkllRklar = d{k'-k). (30.4> 
ο 
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According to the formula 

o o 

j cos OLX dx = πό(α), (30.8) 
ο 

the first integral in (30.7) gives the required ό-function; the second 
integral is zero, since k+k' ^ 0.1* 

When / ^ 0, the functions Rkl are more complicated, but at large 
distances r they can differ from (30.6) only in the phase of the tri-
gonometric factor, since when r -*> oo the term /(/+1)//* 2 can be omit-
ted from (30.3), which then becomes the same as the equation with 
/ = 0 (but, since the resulting equation relates only to the region of 
large it is no longer possible to choose one of the two independent 
solutions from the condition of finiteness for r = 0). The change of 
phase relative to the case / = 0 is in fact found to be \π, and the 

t Formula (30.8) can be derived from (12.9) by taking the real part of each side 
and replacing the integral from — oo to oo by twice the integral from 0 to o o . 

cos (k'~ k)r dr- cos(k+k')rdr. (30.7) 

r2Rk<0Rko dr = sin \ sin kr dr 

To check the normalisation, we can write 

(30.6) 

its solution finite for r — 0 and normalised by the condition (30.4) is 

(30.5) 

For / = 0, equation (30.3) can be written 
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asymptotic form of a spherical wave at large distances is therefore1" 

where ό ; is a constant phase shift; the term γ In in the argument of the 
sine is added so that ό7 = 0 when the field is absent. The constant 
phase shift 6t is determined by the boundary condition (Rkl is finite 
when r = 0) governing the solution of the exact Schrodinger's equa-
tion, and cannot be calculated in a general form. The phase shifts δ} 

are, of course, functions of both / and £, and are an important property 
of the eigenfunctions of the continuous spectrum. 

Let us consider a free particle moving with a definite momentum 
ρ = hk in the direction of the positive z-axis. The wave function of 
such a particle is a plane wave: 

ψ = constant Xeikz 

= constant X eikr c o s θ. (30.11) 

It can be expanded in terms of the wave functions y>klm of free motion 
with definite orbital angular momenta. Since the function (30.11) has 

t The solution of equation (30.3) that is finite at r — 0 can be expressed in terms 
of a Bessel function of half-integral order: 

R*i = Ji+i(kr)/V(kr). 

The usual asymptotic expression for the Bessel functions leads to (30.9). 
t Namely, the field U(r) must decrease more rapidly than l/r. 

(30.9) 

A similar asymptotic expression for the radial part of the wave 
function is valid not only in free motion of a particle but also for motion 
(with positive energy) in any field decreasing sufficiently rapidly as 
r oo.t At large distances, both the field and the centrifugal energy 
may be neglected in Schrodinger's equation, and we again have an 
equation of the form (30.5) for Rkl. The general solution of this 
equation is 

(30.10) 
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oikz . aiRki(r) Pt (cos 0), (30.12) 

where the al are constant coefficients. 
To determine these coefficients, we multiply equation (30.12) by 

P 7(cos Θ) sin θ and integrate over Θ. Since the polynomials Pt with 
different / are orthogonal, and their normalisation integral is 

π 

J 
P 2(cos Θ) sm$de 

we find 
Π 

J 
eikr cos E F L ( C Q S g) s i n Q d 0 = a 

The integral on the left is easily calculated in the region of large r, 
where all the higher-order terms in l/r may be neglected. Integrating 
by parts with the variable μ = cos 0, we have to this accuracy 

(30.13) 

-Rkl(r). (30.14) 

using also the well-known values P 7(l) = 1, P/(—1) = (—1)'. This 
expression can also be written as 

the equation (30.14) with RkI from (30.9) then gives 

(30.15) 

axial symmetry about the z-axis, its expansion can contain only 
functions independent of the angle φ, i.e. having m = 0. These func-
tions are ipkl0 = constant XPl (cos 6)Rkh and the required expansion 
must therefore be 
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This will be used later in discussing the theory of particle scattering. 

P R O B L E M S 

PROBLEM 1. Determine the energy levels for the motion of a particle with angular 
momentum / = 0 in a centrally symmetric potential well: 

U(R) = - U 0 for R < a, U(R) = 0 for R > A. 

SOLUTION. For / = 0 the wave functions depend only on R. Inside the well, 
Schrodinger's equation has the form 

The solution vanishing at infinity is 

ψ = A' E-^lr. 
The condition of the continuity of the logarithmic derivative of RIP at R = A gives 

K cot KA = - Κ = -VLIZMUJH2)-K2], (1) 

or 
sin KA = ±V(H2L2MA2U0)KA. (2) 

This equation determines in implicit form the required energy levels (we must take 
those roots of the equation for which cot KA < 0, as follows from (1)). The first of 
these levels (with / = 0) is at the same time the deepest of all energy levels whatso-
ever, i.e. it corresponds to the normal state of the particle. 

If the depth U0 of the potential well is small enough, there are no levels of nega-
tive energy, and the particle cannot "stay" in the well. This is easily seen from equa-
tion (2), by means of the following graphical construction. The roots of an equa-
tion of the form ±sin Χ = CCX are given by the points of intersection of the line 
Y = OLX with the curves Y = ± sin X, and we must take only those points of inter-
section for which cot Χ < 0; the corresponding parts of the curve Y= ± sin Λ: are 
shown in Fig. 10 by a continuous line. We see that, if α is sufficiently large (C/0 

The solution finite for R = 0 is 

For R > a, we have the equation 

With these coefficients, the expansion (30.12) at large distances r has 
the asymptotic form 

(30.16) 
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ΑΧ 

Χ 

FIG. 10 

small), there are no such points of intersection. The first such point appears when 
the line y = ax occupies the position shown, i.e. for a = 2/π, and is at χ = \π. 
Putting α = fi/V(2ma2U0), χ = ka, we hence obtain for the minimum well depth 
to give a single negative level 

U0tmln = rfh*ISma*. (3) 

This quantity is the greater, the smaller the well radius a. The position of the 
first level at the point where it first appears is determined from ka = \π and is 
zero, as we should expect. As the well depth increases further, the normal level 
descends. 

PROBLEM 2. Determine the energy levels of a three-dimensional oscillator (a par-
ticle in a field U = ^μω2/-2), and their degrees of degeneracy. 

SOLUTION. Schrodinger's equation for a particle in a field U = |mco 2 (* 2 +;y 2 +z 2 ) 
allows separation of the variables, leading to three equations like that of a linear 
oscillator. The energy levels are therefore 

En = to(n1+w2+«3+f) = /ιω(/ι+|). 

The degree of degeneracy of the nth level is equal to the number of ways in which 
η can be divided into the sum of three positive integral (or zero) numbers ;t this is 

\{n+\)(n+2). 

§31. Motion in a Coulomb field 

Let us consider the motion of an electron in a hydrogen atom or in a 
hydrogen-like ion, i.e. in the field of a nucleus whose charge is + Z e \ 
If the nucleus is assumed to remain stationary, the problem reduces to 
that of the motion of a particle in an attractive Coulomb field: 

U=-Z*/r. (31.1) 

t In other words, this is the number of ways in which η similar balls can be 
distributed among three urns. 
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From the general discussion in §22, it is evident from the start that the 
spectrum of positive eigenvalues of the energy Ε will be continuous, 
and that of negative energies discrete. We shall here be concerned with 
the latter, which corresponds to the bound states of the electron. 

In problems connected with the Coulomb field it is convenient to 
use special units for the measurement of all quantities, known as 
atomic units. The units of measurement of mass, length and time are 
taken to be 

m = S U l X K T ^ g , h2/me2 = 0.529X10" 8 cm, 

fp/me* = 2.42 XlO~ 1 7 sec 

(where m is the mass of the electron); the atomic unit of length is called 
the Bohr radius. All the remaining units are expressed in terms of these; 
for example, the unit of energy1" is 

me*/h2 = 4.36 χ 10" 1 1 erg = 27.21 eV. 

The atomic unit of charge is the elementary charge e = 4.80X10" 1 0 

e.s.u. The formulae in atomic units can be obtained by putting e = m 
= A = 1. 

Equation (29.8) for the radial functions has the form 

or, in the new units, 

Instead of the parameter Ε and the variable r, we introduce the 
new quantities 

η = Z / V ( - 2 £ ) , ρ = 2rZ/n. (31.4) 

For negative E9 η is a real positive number. This substitution converts 

t A quantity equal to one half of this unit is called a rydberg. 

(31.2) 

(31.3) 
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(31.3) to the form 

(the primes denote differentiation with respect to Ρ). 
For small Ρ, the solution which satisfies the necessary conditions of 

finiteness is proportional to Q1 (see (29.16)). To calculate the asymptotic 
behaviour of R for large Ρ, we omit from (31.5) the terms in l /Ρ and 
1 / Ρ 2 and obtain the equation 

whence R = e±6/2. The solution in which we are interested, which 
vanishes at infinity, consequently behaves as e~Ql2 for large Ρ. 

It is therefore natural to make the substitution 

The solution of this equation must diverge at infinity not more rapidly 
than every finite power of Ρ, while for Ρ = 0 it must be finite. 

Proceeding exactly as in §25, we seek the solution as a series 

R = Ρ'£?-*/ 2Η<Ρ), (31.6) 

when equation (31.5) becomes 

Qw"+(2l+2-Q)w'+(n-l-l)w = 0. (31.7) 

(31.8) 

substitution in (31.7) gives 

£ [ass(s-l)+(2l+2) Σ [-ass+as(n-l-l)] Q* = 0 

or, replacing s by s-{-1 in the first sum, 

X [as+1(s+l)(s+2l+2)+as(n-l-l-s)]Q° = 0. 

(31.5) 
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Hence the series (31.8) reduces to a polynomial (of degree n—l—l) 
if η = / + 1 , / + 2 , . . . . 

Thus the number η must be a positive integer, and for a given / we 
must have 

η ^l+l. (31.10) 

Recalling the definition (31.4) of the parameter «, we find 

Ε = - Z * / 2 ^ , n = 1,2, . . . . (31.11) 

This solves the problem of determining the energy levels of the discrete 
spectrum in a Coulomb field. We see that there are an infinite number 
of levels between the normal level Ει = — γ and zero. The distances 
between successive levels diminish as η increases; the levels become 
more crowded as we approach the value Ε = 0, where the discrete 
spectrum closes up into the continuous spectrum. In ordinary units, 
formula (31.11) is f 

Ε =-Z?meWn2. (31.12) 

The integer η is called the principal quantum number. The radial 
quantum number defined in §29 is 

nr = n—l—l. 

For a given value of the principal quantum number, / can take the 
values 

/ = 0, 1, . . . , n - l , (31.13) 

i.e. η different values in all. Only η appears in the expression (31.11) 
for the energy. Hence all states with different / but the same η have 

t Formula (31.12) was first derived by N. Bohr in 1913, before the discovery of 
quantum mechanics. In quantum mechanics it was derived by W. Pauli in 1926 
using the matrix method, and a few months later by E. Schrodinger using the wave 
equation. 

Equating to zero the coefficient of each power of ρ, we obtain the 
recurrence relation 

(31.9) 
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the same energy. Thus each eigenvalue is degenerate, not only with 
respect to the magnetic quantum number m (as in any motion in a 
centrally symmetric field) but also with respect to the number /. This 
latter degeneracy (called accidental or Coulomb) is a specific property 
of the Coulomb field. To each value of / there correspond, as we 
know, 2/+1 different values of m. Hence the degree of degeneracy 
of the nth energy level is 

Σ (21+1) = n*. (31.14) 
1=0 

We shall not give here the general expression for the electron wave 
functions, but only the ground-state wave function. When η = 1 and 
/ = 0, the series (31.8) reduces to a constant, and the same is true of 
the angular function F0o- The wave function is therefore 

Z 3 / 2 

W=^T~e-^. (31.15) 

It is normalised by the usual condition 
o o 

J | y l 2 d K = 4JT J r*\y\*dr = 1. 
ο 

The "dimensions" of the atom are represented by the distance r at 
which there is a considerable decrease of the electron density |^ | 2 . 
For a hydrogen atom (Z = 1), this distance is, in order of magnitude, 
just the atomic unit of length, as we see from (31.15). In ordinary 
units, this is the Bohr radius aB = h2jme2. The order of magnitude 
of the velocity of the electron in the atom is given by the uncertainty 
relation: mv ~ h/aB, whence ν ~ e2/h. 

P R O B L E M S 

PROBLEM 1. Determine the probability distribution of various values of the mo-
mentum in the ground state of the hydrogen atom (Z = 1). 

SOLUTION. The wave function in the ρ representation is given by (31.15) a 
the integral (12.12). The integral is calculated by changing to spherical pola 
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coordinates with the polar axis along p: 

e-r -ipr coe 0 C O S β # γ1 ς[Γ> 

The result is 

and the probability density in p-space is | a(p) | 2 . 
PROBLEM 2. Determine the mean potential of the field created by the nucleus 

and the electron in the ground state of the hydrogen atom. 

SOLUTION. The mean potential φ€ created by an "electron cloud" at an arbitrary 
point r is most simply found as the spherically symmetric solution of Poisson's 
equation with charge density ρ = — | tp\2: 

Integrating this equation, and choosing the constants so that φ β(0) is finite and 
φ β(οο) = 0, and adding the potential of the field of the nucleus, we obtain 

For r <c 1 we have φ % 1 /r (the field of the nucleus), and for r » 1 the potential 
φ % e~* (the nucleus is screened by the electron). 
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P E R T U R B A T I O N THEORY 

§32. Perturbations independent of time 

The exact solution of Schrodinger's equation can be found only in 
a comparatively small number of the simplest cases. The majority of 
problems in quantum mechanics lead to equations which are too 
complex to be solved exactly. Often, however, quantities of different 
orders of magnitude appear in the conditions of the problem; among 
them there may be small quantities such that, when they are neglected, 
the problem is so much simplified that its exact solution becomes 
possible. In such cases, the first step in solving the physical problem 
concerned is to solve exactly the simplified problem, and the second 
step is to calculate approximately the errors due to the small terms 
that have been neglected in the simplified problem. There is a general 
method of calculating these errors; it is called perturbation theory. 

Let us suppose that the Hamiltonian of a given physical system is 
of the form 

Η = Η0+Ϋ, 

where Ϋ is a small correction (or perturbation) to the unperturbed oper-
ator HQ. In §§32, 33 we shall consider perturbations which do not 
depend explicitly on time (the same is assumed regarding H 0 also). 
The conditions which are necessary for it to be permissible to regard 
the operator Ϋ as "small" compared with the operator H 0 will be 
derived below. 

The problem of perturbation theory for a discrete spectrum can be 

116 
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formulated as follows. It is assumed that the eigenfunctions ψ<0) and 
eigenvalues Ef* of the discrete spectrum of the unperturbed operator 
/?o are known, i.e. the exact solutions of the equation 

Η0ψ
{0) = £ ( o y o ) (32.1) 

are known. It is desired to find approximate solutions of the equation 

Ηψ = (A0+ Ϋ)ψ = Εψ, (32.2) 

i.e. approximate expressions for the eigenfunctions ψη and eigenvalues 
En of the perturbed operator H. 

In this section we shall assume that no eigenvalue of the operator H0 

is degenerate. Moreover, to simplify our results, we shall suppose that 
there is only a discrete spectrum of eigenvalues. 

The calculations are conveniently performed in matrix form through-
out. To do this, we expand the required function ψ in terms of the 
functions ψη

0): 
Ν=Σ««ΝΊ» 0 )· ( 3 2 · 3 > 

m 

Substituting this expansion in (32.2) we obtain 

m m 

multiplying both sides of this equation by ^ 0 ) * and integrating, we 
find 

( £ - £ ^ K = Z ^ m C m . (32.4) 
m 

Here we have introduced the matrix Vkm of the perturbation operator, 
defined with respect to the unperturbed functions yffi: 

Vkm=ffPi^Yy&dq. (32.5) 

We shall seek the values of the coefficients cm and the energy Ε in the 
form of series 

£=£<°>+j?W+£< 2 >+ c w = c<J)+ciJ> + c<J>+ 

where the quantities E(1) and are of the same order of smallness as 

9 
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the perturbation Ϋ, the quantities E(Z) and are of the second order 
of smallness, and so on. 

Let us determine the corrections to the nth eigenvalue and eigen-
function, putting accordingly = 1, = 0 for m ^ n. To find 
the first approximation, we substitute in equation (32.4) Ε = E^+ 
En1^ ck — 4 0 ) + 4 1 } ' a n ^ retain only terms of the first order. The 
equation with k = η gives 

EM = Vm = jfP*rwPdq. (32.6) 

Thus the first-order correction to the eigenvalue Ε^0) is equal to the 
mean value of the perturbation in the state ^ 0 ) . 

The equation (32.4) with k ^ η gives 

c^ = VJ(E^-E^) for (32.7) 

while remains arbitrary; it must be chosen so that the function 
ψη = ψ^+ψ™ is normalised up to and including terms of the first 
order. For this we can put c*p = 0. For the functions 

(32.8) 

(the prime means that the term with m = η is omitted from the sum) 
are orthogonal to and hence the integral of l y i ^ + y ^ l 2 differs 
from unity only by a quantity of the second order of smallness. 

Formula (32.8) determines the correction to the wave functions in 
the first approximation. Incidentally, we see from this formula the con-
dition for the applicability of the above method. This condition is that 
the inequality 

l ^ l ^ l ^ - J E g ) ! (32.9) 

must hold, i.e. the matrix elements of the perturbation must be small 
compared with the corresponding differences between the unperturbed 
energy levels. 

Next, let us determine the correction to the eigenvalue E^ in the 
second approximation. To do this, we substitute in (32.4) Ε = E^+ 
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(we have substituted c£ } from (32.7) and used the fact that, since the 
operator Ϋis Hermitian, Vmn = V*m). 

We notice that the correction in the second approximation to the 
energy of the normal state is always negative; for, since £* 0 ) then 
corresponds to the lowest value of the energy, all the terms in the sum 
(32.10) are negative. 

The results obtained can be generalised at once to the case where 
the operator Ho has also a continuous spectrum (but the perturbation 
is applied, as before, to a state of the discrete spectrum). To do so, we 
need only add to the sums over the discrete spectrum the corresponding 
integrals over the continuous spectrum. 

For states of the continuous spectrum, of course, the question of a 
change in the energy levels does not arise, and only the corrections to 
the eigenfunctions can be calculated. 

In this connection, mention should be made of the case where the 
perturbation is represented by the potential energy of a particle in a 
weak external field, i.e. in a sufficiently shallow potential well. The 
unperturbed Schrodinger's equation is then simply the equation of 
free motion of the particle, and the energy levels are positive and 
form a continuous spectrum. 

It has been shown at the end of §24 that there are no bound states 
(i.e. no negative energy levels) in such a well. When the energy Ε is 
zero, the unperturbed wave function ^ ( 0 ) of free motion reduces to a 
constant. Since the correction ψ{1) <z ψ(0\ it is clear that the perturbed 
wave function ψ = ψφ)+ψ{1) of the motion in the well is nowhere 
zero. An eigenfunction without nodes belongs to the normal state 

9' 

E^+E^, ck = 4 0 ) + c * ) + c * ) » a n ( * examine the terms of the second 
order of smallness. The equation with k = η gives 

whence 

(32.10) 
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(§22). Thus Ε = 0 remains the least possible value of the energy of the 
particle. 

The condition for perturbation theory to be applicable in this case 
requires that the well depth \ U\is small in comparison with the mean 
kinetic energy which the particle would have if enclosed within the 
well. According to the uncertainty relation, the momentum of such 
a particle would be ρ ~ h/a, where a is the linear dimension of the 
particle; this leads to the condition | U\ <z h2/ma2 stated in §24. t 

P R O B L E M 

Determine the energy levels of an anharmonic linear oscillator whose Hamilto-
nian is 

H= \ρ2/ηι + ±χ2ω2ηι+αίχ3+βχ*. 

SOLUTION. The matrix elements of x3 and x* can be obtained directly according 
to the rule of matrix multiplication, using the expression (25.4) for the matrix 
elements of x. We find for the matrix elements of x* that are not zero 

( * V - a . . = ( Λ , η - 3 = W 2 m o ) f V W « - 1) ( n - 2 ) ] f 

( * * ) « - 1 , « = ( Λ . η - ι = \η/2τηωψ2η^2. 

The diagonal elements in this matrix vanish, so that the correction in the first 
approximation due to the term ax3 in the Hamiltonian (regarded as a perturbation 
of the harmonic oscillator) is zero. The correction in the second approximation due 
to this term is of the same order as that in the first approximation due to the term 
βχ*. The diagonal matrix elements of x* are 

Ο*4)»,» = iWma>)2(2n2 + 2 « + l ) . 

Using the general formulae (32.6) and (32.10), we find the following approximate 
expression for the energy levels of the anharmonic oscillator: 

t A one-dimensional or two-dimensional well, in which the field depends on 
only one or two coordinates, has infinite dimensions in two directions or one direc-
tion respectively, so that this condition cannot be satisfied. This is the reason for the 
inapplicability of perturbation theory to low-energy motion in such wells, and there-
fore for the invalidity of the deduction that there are no bound states. 

file:///
file://U/is
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§33. The secular equation 

Let us now turn to the case where the unperturbed operator H0 

has degenerate eigenvalues. We denote by ψη°\ ψη9,... the eigen-
functions belonging to the same eigenvalue 2^ 0 ) of the energy. The 
choice of these functions is, as we know, not unique; instead of them 
we can choose any s (where s is the degree of degeneracy of the level 
E^) independent linear combinations of these functions. The choice 
ceases to be arbitrary, however, if we subject the wave functions to the 
requirement that the change in them under the action of the small 
applied perturbation should be small. 

At present we shall understand by ψη°\ ψη°?,... some arbitrarily 
selected unperturbed eigenfunctions. The correct functions in the 
zeroth approximation are linear combinations of the form 4°fy«0)+ 
cn°?y)n°?+ . . . . The coefficients in these combinations are determined, 
together with the corrections in the first approximation to the eigen-
values, as follows. 

We write out equations (32.4) with k = « , « ' , . . . , and substitute in 
them, in the first approximation, Ε = 2 ^ 0 ) + £ ( 1 ) ; for the quantities 
ck it suffices to take the zero-order values cn = c<0), cn, = ...; 
cm = 0 for m y£ n, n\ . . . . We then obtain 

EWc„» = 

or 
XWnn>-EVdnn)cW = 0, (33.1) 

where η, ή take all values denumerating states belonging to the given 
unperturbed eigenvalue £ j 0 ) . This system of homogeneous linear 
equations for the quantities 4 0 ) has solutions which are not all zero 
if the determinant of the coefficients of the unknowns vanishes. Thus 
we obtain the equation 

\Vnn>-EV>dnn,\ = 0 . (33.2) 

This equation is of the .sth degree in Ea) and has, in general, s 
diflFerent real roots. These roots are the required corrections to the 
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eigenvalues in the first approximation. Equation (33.2) is called the 
secular equation? 

Substituting in turn the roots of equation (33.2) in the system (33.1) 
and solving, we find the coefficients 4 0 ) and so determine the eigen-
functions in the zeroth approximation. 

As a result of the perturbation, an originally degenerate energy level 
ceases in general to be degenerate (the roots of equation (33.2) are 
in general distinct); the perturbation removes the degeneracy, as we 
say. The removal of the degeneracy may be either total or partial 
(in the latter case, after the perturbation has been applied, there remains 
a degeneracy of degree less than the original one). 

P R O B L E M S 

PROBLEM 1. Determine the corrections to the eigenvalue in the first approxima-
tion and the correct functions in the zeroth approximation, for a doubly degenerate 
level. 

SOLUTION. Equation ( 3 3 . 2 ) here has the form 

VVL-EF* V12 I 

V2l V22-E™\ 

(the suffixes 1 and 2 correspond to two arbitrarily chosen unperturbed eigenfunc-
tions ψ[0) and y4 0 ) of the doubly degenerate level in question). Solving, we find 

Ε™ = # ( Κ „ + VTJ±Aafi»], * ο * ϋ = V [ ( K „ - F 2 2 ) 2 + 4 I Vlt\*l, ( 1 ) 

with the notation ήωω for the difference between the two values of Εω. Solving 
also equations ( 3 3 . 1 ) with these values of E{1), we obtain for the coefficients in the 
correct normalised functions in the zeroth approximation y>(0) = c[0)yj{0) + ty£0> 

the values 

( 2 ) 

PROBLEM 2 . At the initial instant / = 0 , a system is in a state ψ[0) which belongs 
to a doubly degenerate level. Determine the probability that, at a subsequent in-
stant t, the system will be in the state ψ2

0) with the same energy; the transition 
occurs under the action of a constant perturbation. 

t The name is taken from celestial mechanics. 



§34 Perturbations depending on time 123 

SOLUTION. We form the correct functions in the zeroth approximation, 

Ψ = CiV>i+c2y>2, ψ' = Φι+φ 2 , 
where cl9 c2; c{, c2 are two pairs of coefficients determined by formulae (2) of 
Problem 1 (for brevity, we omit the index ( 0 ) on all quantities). 

Conversely, 

§34. Perturbations depending on time 

Let us now go on to study perturbations depending explicitly on 
time. We cannot speak in this case of corrections to the eigenvalues, 
since, when the Hamiltonian is time-dependent (as will be the perturbed 
operator Η = Ho+Y(t)\ the energy is not conserved, so that there 
are no stationary states. The problem here consists in approximately 
calculating the wave functions from those of the stationary states of 
the unperturbed system. 

To do this, we shall apply a method analogous to the well-known 
method of varying the constants to solve linear differential equations.1" 
Let Ψ*Ρ be the wave functions (including the time factor) of the 

t The application of this method in quantum mechanics is due to P.A.M. 
Dirac (1926). 

The functions ψ and ψ' belong to states with perturbed energies E+E(1) and 
E+E{1)/, where E{1) and E{1)/ are the two values of the correction (1) in Problem 1. 
On introducing the time factors we pass to the time-dependent wave functions: 

(at time / = 0, Ψχ = y^). Finally, again expressing ψ, ψ' in terms of ψΐ9 ψ2, we 
obtain IF^as a linear combination of y^andy^* with coefficients depending on time. 
The squared modulus of the coefficient of ψ2 determines the required transition 
probability w12. Calculation using (1) and (2) gives 

We see that the probability varies periodically with time, with frequency co ( 1 ). 
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W 1 I V 1 V 

Vmk(t) = J N O ) * M O ) dq = = (£G>-4 0 ) ) /* 

are the matrix elements of the perturbation, including the time factor 
(and it must be borne in mind that, when V depends explicitly on time, 
the quantities Vmk also are functions of time). 

As the unperturbed wave function we take the wave function of the 
z'th stationary state, for which the corresponding values of the coeffi-
cients in (34.2) are af} = 1, af = 0 for k Φ /. To find the first 
approximation, we seek ak in the form ak = af^+d^, substituting 
ak = ak

0) on the right-hand side of equation (34.3), which already 
contains the small quantities Vmk. This gives 

ih άαψΙάί = Vki(t). (34.4) 

In order to show the unperturbed function to which the correction 

stationary states of the unperturbed system. Then an arbitrary solution 
of the unperturbed wave equation can be written in the form of a sum: 
Ψ = Σ^Ψ^. We shall now seek the solution of the perturbed equa-
tion 

ihdW/dt = (Η0+Ϋ)Ψ (34.1) 

in the form of a sum 

Ψ = Σα£)η°\ (34.2) 
k 

where the expansion coefficients are functions of time. Substituting 
(34.2) in (34.1), and recalling that the functions W(

k

0) satisfy the 
equation 

ihdW^/dt = η0ψ^°\ 

we obtain 

Multiplying both sides of this equation on the left by Ψ%>* and inte-
grating, we have 

(34.3) 
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is being calculated, we introduce a second suffix in the coefficients ak9 

writing 
Ψ, = Σ^ί)Ψ^· (34-5) 

k 

Accordingly, we write the result of integrating equation (34.4) in the 
form 

4 ? = - (*/*) J" Vki{t) dt=- (//ft) J Vki e"»«« at. (34.6) 

This gives the wave functions in the first approximation. The choice 
of limits in the integrals in (34.6) depends on the conditions of each 
specific problem. Let us suppose, for example, that the perturbation 
acts only during some finite interval of time (or that V(f) diminishes 
sufficiently rapidly as t ± ). Let the system be in the ith stationary 
state (of a discrete spectrum) before the perturbation begins to act 
(or in the limit as t — oo ). At any subsequent instant the state of the 
system will be determined by the function (34.5), where, in the first 
approximation, 

(34.7) 

the limits of integration are taken so that, as all the c($ 
tend to zero. After the perturbation has ceased to act (or in the limit 
t _ + o o ) , the coefficients aki take constant values %(<*>), and the 
system is in the state with wave function 

k 

which again satisfies the unperturbed wave equation, but is different 
from the original function Ψ} 0 ). According to the general rule, the 
squared modulus of the coefficient aki{^>) determines the probability 
for the system to have an energy Ej?\ i.e. to be in the kth stationary 
state. 
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Thus, under the action of the perturbation, the system may pass 
from its initial stationary state to any other. For uniformity, let the 
initial state be denoted by the subscript /, and the final state by the 
subscript / . The probability of the transition i-*f'is 

If the perturbation V(t) varies little during time intervals of the 
order of the period 1/ω/ζ, the value of the integral in (34.8) will be 
very small, because of the presence in the integrand of the rapidly 
oscillating and variable-sign factor έ03**. In the limit when the 
applied perturbation varies arbitrarily slowly, the probability of any 
transition with change of energy (i.e. with a non-zero frequency ω ·̂) 
tends to zero. Thus, when the perturbation changes sufficiently slowly 
(adiabatically), a system in any non-degenerate stationary state will 
remain in that state. 

One of the most important applications of perturbation theory is to 
calculate the probability of a transition between states of a continuous 
spectrum under the action of a constant (time-independent) perturba-
tion. This includes various collision processes, where the system in the 
initial and final states is an assembly of colliding particles, and the 
perturbation is represented by the interaction between them. The 
phenomena to which the method described below applies also include 
processes where a system in a bound state disintegrates into freely 
moving parts. For definiteness, we shall first consider this latter case.1" 

Let ν denote the set of quantities which take a continuous sequence 
of values defining the states of the continuous spectrum, and dv the 
product of their differentials. The unperturbed wave functions of the 

t Strictly speaking, the discrete-spectrum states of a system capable of disinteg-
ration are not stationary but quasi-stationary (see §38); this point is not important 
in the present discussion, but will be further treated in §102. 

(34.8) 

§35. Transitions in the continuous spectrum 
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continuous spectrum will be supposed normalised by the o-function 
on the ν scale (for example, the quantities ν may be the momentum 
components of the free particles; the wave functions must then be 
normalised by the ό-function of momentum). With this normalisation, 
the expansion of the wave function has, instead of (34.2), the form 

Ψ = ζ ak(t) ψμ+ J atffPF dv9 (35.1) 

where the sum is taken over the whole discrete spectrum, and the 
integration over the continuous spectrum; then \av(t)\

2dv is the 
probability of finding the system (at time t) in states in the interval 
from ν to v+ dv (cf. §5). 

At the instant / = 0, let the system be in the initial state, denoted 
by the subscript i, and let us find the probability of a transition of the 
system to the state f9 in which the quantities ν have values in the inter-
val dvf. 

By an appropriate change of the subscripts in (34.6) and by integra-
tion (when Vfi is independent of time), we get 

(35.2) 

The lower limit of integration is chosen so that afi = 0 for t = 0, in 
accordance with the initial condition stated. 

The squared modulus of (35.2) is 

(35.3) 

It is easily seen that, when / is large, this function is proportional to t. 
This is proved by using the formula 

(35.4) 
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The probability is zero except for transitions to states with energy 
Ef = Et, in accordance with the law of conservation of energy. This 
law is represented by the d-function in (35.6), but the probability is, 
of course, not infinite (which would be meaningless) when Ef = Et; in 
reality, the (5-function is eliminated by integration over a finite interval 
of states. For example, if the states of the continuous spectrum are 
not degenerate, dvf must be taken as a single energy value. Then the 
integration of (35.6) over dvf = dEf gives the value of the transition 
probability as 

w=(27i/h)\Vfi\*. (35.7) 

when α j6 0 the limit is zero, when α = 0 we have sin2 α//α2/ = t and 
the limit is infinite, and integration over α from — oo to oo with 
out = I gives 

Thus the function on the left of (35.4) has all the properties of the 
ό-function. Accordingly, for large t we can write 

or, since δ(αχ) = δ(χ)/&9 

(35.5) 

The expression \afi\
2 dvf is the probability of a transition from the 

original state to a state in the interval dvf. We see that, for large t9 

this expression is proportional to the time elapsed since / = 0. Without 
the factor it gives the transition probability dw per unit time (whose 
dimensions are 1 /T7, in contrast to the dimensionless probability (34.7)): 

(35.6) 
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Formula (35.6) is also applicable when the initial state of the system 
is also in the continuous spectrum, as occurs in the collision problem; 
an example will be given in §67. It must be noticed, however, that in 
such cases the quantity dw determined by formula (35.6) is not actually 
the transition probability; it does not even have the correct dimensions 
(1 /T). The expression (35.6) is proportional to the number of transitions 
per unit time, but its dimensions and sense depend on the way in which 
the initial wave functions of the continuous spectrum are normalised; 
for instance dw may be the collision cross-section, as will be seen in 

It may happen that the matrix element Vfi for the transition con-
sidered vanishes. Then formula (35.6) does not answer the question 
concerned, and in order to determine the transition probability we 
have to go to the next approximation of perturbation theory. 

The correction aft vanishes together with Vfi. For the second-order 
correction fljf, equations (34.3) give 

where the summation is over the states for which the matrix elements 
for transitions k / are non-zero. The first-order corrections α$ 
are given by the equations 

§67. 

§36. Intermediate states 

(36.1) 

Vkie
i(°kit 

(cf. (34.4)); hence 

4 V = - ( f w ^ ) ( ^ - i ) . 

Substituting this in (36.1) and integrating, we obtain 
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In the integral we need retain only the first term, which will contain 
the small denominator ω/ζ·. Thus 

This expression differs from (35.2) only in that the matrix element 
Vfi is replaced by the sum in parentheses. Accordingly, we obtain 
instead of (35.6) 

In this connection the states k for which the matrix elements Vfk and 
Vki are not zero are called intermediate states for the transition / f. 
We can say in an intuitive way that this transition takes place, as it 
were, in two stages: / k and k / ; such a description must not, 
of course, be understood literally. 

Let us consider a system composed of two weakly interacting parts. 
We suppose that it is known that at some instant these parts have 
definite values of the energy, which we denote by Ε and ε respectively. 
Let the energy be measured again after some time interval the 
values E\ ε' obtained are in general different from Ε, ε. It is easy to 
determine the order of magnitude of the most probable value of the 
difference Ε— ε which is found as a result of the measurement. 

According to formula (35.3), the probability of a transition of the 
system (after time t\ under the action of a time-independent perturba-
tion, from a state with energy Ε to one with energy Ε' is proportional 
to 

(36.2) 

§37. The uncertainty relation for energy 

sin2 [(E'-E)tl2h]l(E'-Ef. 

Hence we see that the most probable value of the difference Ε'—Ε is 
of the order of h/t. 
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Applying this result to the case we are considering (the perturbation 
being the interaction between the parts of the system), we obtain 
the relation 

Thus the smaller the time interval At, the greater the energy change 
that is observed. It is important to notice that its order of magnitude 
hi At is independent of the amount of the perturbation. The energy 
change determined by the relation (37.1) will be observed, however 
weak the interaction between the two parts of the system. This result 
is peculiar to quantum theory and has a deep physical significance. 
It shows that, in quantum mechanics, the law of conservation of energy 
can be verified by means of two measurements only to an accuracy of 
the order of h/At, where At is the time interval between the measure-
ments. 

The relation (37.1) is often called the uncertainty relation for energy. 
However, it must be emphasised that its significance is entirely differ-
ent from that of the uncertainty relation Ap Ax ~ h for the coordinate 
and momentum. In the latter, Ap and Ax are the uncertainties in the 
values of the momentum and coordinate at the same instant; the rela-
tion shows that these two quantities can never have entirely definite 
values simultaneously. The energies Ε, ε, on the other hand, can be 
measured to any degree of accuracy at any instant. The quantity 
(Ε+ε)-(Ε'+ε') in (37.1) is the difference between two exactly meas-
ured values of the energy E+ ε at two different instants, and not the 
uncertainty in the value of the energy at a given instant. 

If we regard Ε as the energy of some system and ε as that of a 
"measuring apparatus", we can say that the energy of interaction be-
tween them can be taken into account only to within hi At. Let us 
denote by Δ Ε, Δ ε , . . . the errors in the measurements of the correspond-
ing quantities. In the favourable case when ε, ε' are known exactly 
(Δε = Δε' = 0), we have 

From this relation we can derive important consequences concern-
ing the measurement of momentum. The process of measuring the 

\Ε+ε-Ε'-ε'\Αί ~ h. (37.1) 

Α(Ε-Ε') ~ hjAt. (37.2) 
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momentum of a particle (for definiteness, we shall speak of an electron) 
consists in a collision of the electron with some other ("measuring") 
particle, whose momenta before and after the collision can be regarded 
as known exactly. The conservation laws for momentum and energy 
have to be applied to this process. The latter, however, can be applied, 
as we have seen, only to an accuracy of the order of h/At, where Δ/ is 
the time between the beginning and end of the process in question. 

To simplify the subsequent discussion, it is convenient to consider 
an imaginary idealised experiment in which the "measuring particle" 
is a perfectly reflecting plane mirror; only one momentum component 
is then of importance, namely that perpendicular to the plane of the 
mirror. To determine the momentum Ρ of the particle, the laws of 
conservation of momentum and energy give the equations 

p'+P'-p-P = 0, (37.3) 

\ε'+Ε'-ε-Ε\ ~ h/At, (37.4) 

where Ρ, Ε are the momentum and energy of the particle, and ρ, ε those 
of the mirror; the unprimed and primed quantities refer to the instants 
before and after the collision respectively. The quantities /?, p\ ε, ε' 
relating to the "measuring particle" can be regarded as known exactly, 
i.e. the errors in them are zero. Then we have for the errors in the 
remaining quantities, from the above equations: 

AP = ΔΡ', ΔΕ'-ΑΕ ~ Λ/At. 

But A Ε = (dE/dP)AP = vAP, where ν is the velocity of the electron 
(before the collision), and similarly ΑΕ' = v' ΑΡ' = υ' ΑΡ. Hence we 
obtain 

(v'x-vx)APx~h/At. (37.5) 

We have here added the sufBx χ to the velocity and momentum, in 
order to emphasise that this relation holds for each of their components 
separately. 

This is the required relation. It shows that the measurement of the 
momentum of the electron (with a given degree of accuracy AP) 
necessarily involves a change in its velocity (i.e. in the momentum 
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itself). This change is the greater, the shorter the duration of the 
measuring process. The change in velocity can be made arbitrarily 
small only as At -* o o , but measurements of momentum occupying 
a long time can be significant only for a free particle. The non-repeat-
ability of a measurement of momentum after short intervals of time, 
and the "two-faced" nature of measurement in quantum mechanics— 
the necessity of a distinction between the measured values of a quantity 
and the values resulting from the process of measurement—are here 
exhibited with particular clarity.1" 

§38. Quasi-stationary states 

The conclusion reached at the beginning of §37 can also be derived 
from another standpoint by considering the decay of a system under 
the action of some perturbation. Let E0 be some energy level of the 
system, calculated without any allowance for the possibility of its 
decay. We denote by χ the lifetime of this state of the system, i.e. the 
reciprocal of the probability w of decay per unit time: 

τ = 1/w. (38.1) 

Then we find by the same method that 

\Ε0—Ε—ε\ ~ ή/τ, 

where Ε, ε are the energies of the two parts into which the system 
decays. The sum Ε+ε, however, gives us an estimate of the energy 
of the system before it decays. Hence the above relation shows that 
the energy of a system which is free to decay can be determined only 
to within a quantity of the order of ή/τ. 

A system that is able to decay does not, strictly speaking, have a 
discrete energy spectrum. A particle leaving the system when it decays 
goes to infinity; in this sense, the motion of the system is infinite, and 
hence the energy spectrum is continuous. 

t The relation (37.5) and the elucidation of the physical significance of the un-
certainty relation for energy are due to N. Bohr (1928). 

10 
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It may happen, however, that the decay probability of the system 
is very small. The simplest example of this kind is a particle surrounded 
by a sufficiently high and wide potential barrier. For such systems 
having a small decay probability, we can consider quasi-stationary 
states, in which the particles move for a considerable time "within 
the system" and leave it only much later. The energy spectrum of 
these states will be "quasi-discrete"; it consists of a series of broadened 
levels whose widths depend on their lifetimes. The width of a level 
can be quantitatively expressed by 

Γ = h/r = hw. (38 .2 ) 

The widths of the quasi-discrete levels are small compared with the 
distances between them. 

In discussing the quasi-stationary states, we can use the following 
formal method. Until now we have always considered solutions of 
Schrodinger's equation with a boundary condition requiring the finite-
ness of the wave function at infinity. Instead of this, we shall now 
look for solutions which represent an outgoing spherical wave at 
infinity (ψ ~ e*kr/r); this corresponds to a particle finally leaving the 
system when it decays. Since such a boundary condition is complex, 
we cannot assert that the eigenvalues of the energy must be real. On 
the contrary, by solving Schrodinger's equation we obtain a set of 
complex values, which we write in the form 

E=E0-\ir9 ( 38 .3 ) 

where E0 and Γ are two positive constants. 
It is easy to see the physical significance of the complex energy 

values. The time factor in the wave function of a quasi-stationary state 
is of the form 

e-{ilh)Et — e-(ilh)E0te-rt/2fi ^ 

Hence all the probabilities given by the squared modulus of the wave 
function decrease with time as e~rt/h. In particular, the probability 
of finding the particle "within the system" decreases according to 
this law. 
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An extensive class of quasi-stationary states arises in nuclear reac-
tions at not too high energies which pass through the stage of forma-
tion of a compound nucleus.^ An intuitive physical picture of the pro-
cesses occurring is that the particle (such as a neutron) incident on the 
nucleus interacts with the nucleons in the nucleus and "coalesces" 
with them, forming a compound system in which the energy contribut-
ed by the particle is distributed between many nucleons. The long life-
time of the quasi-stationary states in such a system (compared with 
the "periods" of the motion of the nucleons in the nucleus) is due to 
the fact that for the greater part of the time the energy is distributed 
between many particles, so that none of them has sufficient energy 
to overcome the attraction of the other particles and leave the nucleus. 
Sufficient energy to break up the compound nucleus is only compara-
tively rarely concentrated on one particle. 

t The concept of the compound nucleus is due to N. Bohr (1936). 

10* 
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§39. Spin 

Let us consider a composite particle, such as an atomic nucleus, at 
rest as a whole and in a definite internal state. In addition to an 
internal energy, it has also an angular momentum of definite magnitude 
L, due to the motion of the particles within the nucleus. For a given 
L the angular momentum can, as we know, have 2L+1 different 
orientations in space. 

It has been mentioned in §18 that an important feature of the concept 
of angular momentum in quantum mechanics is that this quantity 
determines the symmetry properties of the states of the system with 
respect to rotations in space. When the coordinates are rotated, the 
2L+1 wave functions \pLM corresponding to different values of the 
angular momentum component Μ are transformed into certain com-
binations of one another. 

In this formulation, the origin of the angular momentum becomes 
unimportant, and we naturally arrive at the concept of an "intrinsic" 
angular momentum which must be ascribed to the particle regardless 
of whether it is "composite" or "elementary". 

Thus, in quantum mechanics an elementary particle must be assigned 
a certain "intrinsic" angular momentum unconnected with its motion 
in space. This property of elementary particles is peculiar to quantum 
theory (it disappears in the limit h 0), and therefore has in principle 
no classical interpretation.1" 

t In particular, it would be wholly meaningless to imagine the "intrinsic" angular 
momentum of an elementary particle as being the result of its rotation "about its 
own axis". 

136 
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The intrinsic angular momentum of a particle is called its spin, as 
distinct from the angular momentum due to the motion of the particle 
in space, called the orbital angular momentum. The particle concerned 
may be either elementary, or composite but behaving in some respect 
as an elementary particle (e.g. an atomic nucleus). The spin of a particle 
(measured, like the orbital angular momentum, in units of h) will be 
denoted by s.1" 

For particles having spin, the description of the state by means of 
the wave function must determine the probability not only of its 
different positions in space but also of the possible orientations of the 
spin. Thus the wave function must depend not only on three continu-
ous variables, the coordinates of the particle, but on a discrete spin 
variable, which gives the value of the projection of the spin on a 
selected direction in space (the z-axis) and takes a limited number of 
discrete values, which we shall denote by a. 

Let ψ(χ, y,z;a) be such a wave function. It is essentially a set of 
several different functions of the coordinates, corresponding to differ-
ent values of cr; these functions will be called the spin components of 
the wave function. The integral 

$\y>(x,y,z;a)\2dV 

determines the probability that the particle has a certain value of a. 
The probability that the particle is in the volume element dV with 
any value of a is 

Σ\ψ(*, y,z;a)\2. 
a 

The quantum-mechanical spin operator, on being applied to the 
wave function, acts on the spin variable a. In other words, it in some 
way transforms the components of the wave functions into linear 
combinations of one another. The form of this operator will be es-
tablished later. However, it is clear a priori that the operators sx, sy, s2 

of the three spin components satisfy the same commutation rules as 
the operators of the orbital angular momentum. The general defini-

t The physical idea that an electron has an intrinsic angular momentum was 
put forward by G. Uhlenbeck and S. Goudsmitin 1925. Spin was introduced into 
quantum mechanics in 1927 by W. Pauli. 
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tion of the angular momentum operators in quantum mechanics is 
based on their relation to the operators of infinitesimal rotations. In 
deriving the expressions and commutation rules for these operators, 
they were assumed to act on functions of the coordinates. In fact, 
however, these rules represent properties of rotations as such, no 
matter to what mathematical entity they are applied, and therefore 
have universal validity. 

The commutation rules enable us to determine the possible values 
of the absolute magnitude and components of the spin. All the results 
derived in §15 (formulae (15.6)-(15.8)) were based only on the commu-
tation rules, and hence are applicable here also; we need only replace 
L in these formulae by s. It follows from formulae (15,6) that the eigen-
values of the z-component of the spin form a sequence of numbers 
differing by unity. However, we cannot now assert that these values 
must be integral, as we could for the component lz of the orbital an-
gular momentum (the derivation given at the beginning of §15 is in-
valid here, since it was based on the specific expression for the operator 
7Z, acting on functions of the coordinates). 

Moreover, the sequence of eigenvalues sz is limited above and below 
by values equal in absolute magnitude and opposite in sign, which we 
denote by ±s. The difference 2s between the greatest and least values 
of s2 must be an integer or zero. Consequently s can take the values 

^5 2 » A ' 2 ' 
Thus the eigenvalues of the square of the spin are 

s 2 = φ + 1 ) , (39.1) 

where s can be either an integer (including zero) or half an integer. 
For given s9 the component sz of the spin can take the values σ = s, 
5 — 1 , . . . , —s, i.e. 2y+ 1 values in all. From what was said above, a 
particle whose spin is s must have a wave function with 2s+1 com-
ponents.1" 

t Since s is fixed for each kind of particle, the spin angular momentum hs be-
comes zero in the limit of classical mechanics (h -*· 0). This consideration does 
not apply to the orbital angular momentum, since / can take any value. The tran-
sition to classical mechanics is represented by h tending to zero and / simultaneously 
tending to infinity, in such a way that the product hi remains finite. 
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The majority of the elementary particles (electrons, protons, neu-
trons, μ-mesons) have a spin of \ . There are also elementary particles 
with other spin values, for example the π-mesons and the AT-mesons, 
whose spin is zero. 

The total angular momentum of a particle, denoted by j , is composed 
of its orbital angular momentum 1 and its spin s. Their operators act 
on functions of different variables, and therefore, of course, commute. 
The eigenvalues of the total angular momentum 

j = l + s (39.2) 

are determined by the same "vector model" rule as the sum of the 
orbital angular momenta of two different particles (§17). That is, for 
given values of / and s, the total angular momentum can take the 
values j = l+s, l+s— 1, . . . , | l—s\. Thus,for an electron (spin y) with 
non-zero orbital angular momentum /, the total angular momentum 
can be j = l±.\\ for / = 0 the angular momentum j has, of course, 
only the one value j = ~. 

The operator of the total angular momentum J of a system of 
particles is equal to the sum of the operators of the angular momentum 
j of each particle, so that its values are again determined by the vector 
model rules. The angular momentum J can be put in the form J = 
L + S , where S is the total spin and L the total orbital angular 
momentum of the particles. 

The formulae (15.11) for the matrix elements of the angular mo-
mentum components are, like the commutation rules, valid universally 
(i.e. for any angular momentum). The angular momentum selection 
rules derived in §18 for the matrix elements of various physical quan-
tities also remain valid (with appropriate change of notation). 

§40. The spin operator 

In §§40-42 we shall not be interested in the dependence of the wave 
function on the coordinates. For example, in speaking of the behaviour 
of the function ψ(σ) when the system of coordinates is rotated, we can 
suppose that the particle is at the origin, so that its coordinates remain 
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unchanged by such a rotation, and the results obtained will character-
ise the behaviour of the function ψ with regard to the spin variable CR. 

The variable a differs from the ordinary variables (the coordinates) 
by being discrete. The most general form of a linear operator acting 
on functions of a discrete variable σ is 

Μο)=Σίοο^\ (40.1) 
Σ' 

where the faa, are constants. 
It is easy to see that these quantities are the same as the matrix 

elements of the operator / , determined by the usual rule (11.6) from the 
eigenfunctions of the operator s2. The integration over the coordinates 
in (11.6) is here replaced by summation over the discrete variable, so 
that the definition of the matrix element is 

Λ 2 σ ι = Σ ^ ) [ / ν σ ι ( ( τ ) ] . (40.2) 
a 

Here ψσι(σ) and ψσ£σ) axe the eigenfunctions of the operator sz corre-
sponding to the eigenvalues sz = ΟΊ and <r2; each such function cor-
responds to a state in which the particle has a definite value of sz, i.e. 
in which only one component of the wave function is non-zero 

ψσ£σ) = δσι„9 ψο2(σ) = <5σ2σ. (40.3) 

According to (40.1), 

and on substitution of this and ipzip) the equation (40.2) is satisfied 
identically; this completes the proof. 

t More precisely, we should write 

ψσ(χ, γ,ζ;σ) = ψ(χ, y, ζ)δσ^ ...; 

in (40.3) the coordinate factors are omitted, being unimportant in this connection. 
We must once again emphasise the distinction between the specified eigenvalue 

σχ or σ 2 of s% a n a < t n e independent variable σ. 
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Thus the operators acting on the wave functions of a particle with 
spin s can be represented in the form of (2.s+ l)-rowed matrices. In 
particular, we have for the operators of the spin itself 

According to what has been said above at the end of §39, the matrices 
sx, sy, sz are identical with the matrices of Lx, Ly, Lz obtained in §15, 
where the letters L and Μ need only be replaced by s and a in (15.11). 
This determines the spin operators. 

These are called Pauli matrices. The matrix sz is diagonal, as is to be 
expected for a matrix defined with respect to the eigenfunctions of the 
operator s2 itself. 

Let us consider more closely the "spin" properties of wave func-
tions. For a particle with spin zero, the wave function has only one 
component, which is unaltered by rotations of the coordinate system, 
i.e. it is a scalar. 

For the wave functions of particles with non-zero spin, we must 
first of all consider their behaviour under rotations about the z-axis. 
The operator of an infinitesimal rotation through an angle δφ about 
the z-axis can be written in terms of the angular momentum operator 

t In the tabular matrices (40.6) the rows and columns are numbered by the 
values of σ, the row number corresponding to the first and the column number to 
the second suffix of the matrix element. In the present case, these numbers are 
I and - | . The action of the operator shown by (40.1) multiplies row a of the 
matrix by a "column" containing the components of the wave function 

(40.4) 

In the important case of a spin of ~ (s = ~, σ = ± y), these matrices 
have two rows, and are written in the form 

§41. Spinors 

where* 
(40.5) 
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(in this case, the spin operator) as 1 + ι δφ >sz. As a result of the rota-
tion, the functions ψ(σ) therefore become ψ(α)+δψ(σ)9 where 

δψ(σ) = ι δφ ·ίζψ(σ). 

But Sz is a diagonal matrix, and its diagonal elements are equal to the 
eigenvalues sz = a. Hence ίζψ(σ) = ογ(σ\ and 

δψ(σ) = ίσψ(σ)·δφ. 

Writing this as the differential equation άψ/άφ = ισψ and integrating, 
we find the value of the function ψ(σ) after a rotation through any 
finite angle φ; denoting this value by a prime, we have 

<ψ(σ)' =ψ(σ)έ*Φ. (41.1) 

In particular, a rotation through φ = 2π multiplies all the compo-
nents ψ(σ) by the same factor 

GIN* = ( _ L ) * R = ( _ ! ) * . 

it is evident that the numbers 2o always have the same parity as 2s. 
Thus, when the coordinate system is completely rotated about the 
axis, the wave functions of particles with integral spin return to their 
original values, and those of particles with half-integral spin change 
sign. 

The wave functions of particles with spin y , such as electrons, have 
two components, ψ(~) and ψ( — γ). For convenience in later generalisa-
tions, we shall call these components tp1 and ψ2 respectively (with 
superscripts 1 and 2): 

^ = v ( t ) . V2 = l K - D - (41-2) 
In any rotation of the coordinate system, φ 1 and ψ2 undergo a linear 
transformation: 

xpv = κψΐ+βψ2, <ψ2' = γ^+δψ2. (41.3) 

The coefficients α, β, γ, δ are in general complex and functions of the 
angles of rotation. They are connected by relations which will be 
derived below. 
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Let us consider a system of two electrons (in relative motion with 
zero orbital angular momentum). The total spin S of the system may 
be 0 or 1. For 5 = 0, the system as a whole behaves like a particle 
with spin zero, so that its wave function must be a scalar. On the 
other hand, if the particles are regarded as not interacting, the wave 
function of the system must be expressed in terms of products of the 
wave functions of each particle separately (denoted by ψ and φ). It is 
easily seen that this wave function has to be constructed from the 
components of ψ and φ as the bilinear form 

(41.4) 

which is antisymmetric in the superscripts 1 and 2: a simple calcula-
tion using (41.3) gives 

i.e. the quantity (41.4) is transformed into itself when the coordinate 
system is rotated. It must therefore be a scalar. Hence we have 

ocS-βγ = 1. (41.5) 

This is one of the required relations. 
The expression 

| ψ 1 | 2 + | ^ 2 | 2 = y y * + ^ 2 * 9 

which gives the probability of finding an electron at a particular point 
in space, must evidently be a scalar also. Comparison of this with the 
scalar (41.4) shows that the components ψ1* and ψ2* of the complex 
conjugate wave function to ψ1, ψ2 must be transformed as ψ2 and —ψ1 

respectively: 

ψ 1 " = δψ^-γψ2*, ψ2*' = -βψ1*+<χ<ψ2*. 

On the other hand, by taking the complex conjugate equations to 
(41.3), 
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and comparing them with the above, we find that the coefficients 
α, β , γ, δ are related also by 

α = ό*, β=-γ*. (41.6) 

By virtue of the relations (41.5), (41.6), the four complex quantities 
α, β , y, δ actually contain only three independent real parameters, 
corresponding to the three angles which define a rotation of a three-
dimensional system of coordinates. 

A two component quantity w = Γ \ that is transformed in accord-
\ψ2/ 

ance with (41.3) when the coordinate system is rotated is called a 
spinor of rank one, or simply a spinor. Thus the wave function of a 
particle with spin ~ is a spinor. 

Let us now consider the states of a system of two electrons having 
spin S = 1. Its wave function must have three components, correspond-
ing to spin projections + 1 , 0 , and — 1. They are expressions construct-
ed from products of components of the spinors ψ and φ that are 
symmetric with respect to the indices and are mutually transformed 
in accordance with (41.3): 

(41.7) 

The projection σ of the total spin of the system is equal to the sum 
of those of the spins of the two electrons. Thus the correspondence 
of the functions (41.7) to the values of σ is evident from the significance 
of the spinor indices 1 and 2, which show the values of the spin pro-
jections for the two electrons separately. The first function has two 
indices 1 and therefore corresponds to a — \+ \ = 1; the second has 
one 1 and one 2, so that a = y — \ — 0; the third, with two indices 2, 
gives ο = - ! - ! = - l . 

The spin properties of the wave functions, being essentially their 
properties with respect to rotations of the coordinates, are of course 
the same for one particle with spin 1 and for a system of particles with 
total spin 1. The result (41.7) is therefore more generally valid: the 
wave function of any particle with spin 2 is what is called a symmetrical 
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spinor of rank 2. A spinor of rank 2 is a set of four quantities ψι\ ψ22, 
ψ*2, ψ21 that are transformed by rotations of the coordinates as products 
of the corresponding components of two spinors of rank 1 (but, of 
course, they need not actually be such products).* For a symmetrical 
spinor of rank 2, ψ12 = ψ2\ and it therefore has only three independent 
components.! Their correspondence with the components of the wave 
function ψ(σ) is given by the formulae 

ψ(1) = ψχ\ ψφ) = V2^ 1 2 , ψ(-1) = ψ22. (41.8) 

The wave function of a particle with spin 1 can also be represented 
as a three-dimensional vector ψ. This is evident from the fact that a 
three-dimensional vector is a set of likewise three quantities that are 
transformed into linear combinations of one another when the co-
ordinate system is rotated. The correspondence between the compo-
nents of the symmetrical spinor of rank 2 and the components of a 
vector is shown by the formulae 

ψ11 = — (ψχ—ϊψγ)9 ψ22 = Wx+fyy, ψ12 = ψζ· (41.9) 

These signify that the spinor components on the left-hand sides are 
transformed in the same manner as the combinations of vector com-
ponents on the right-hand sides. The correctness of this assignment 
may be seen from the example of a rotation about the z-axis, for which 
the spinor transformation law is given by (41.1)." On the other hand, 

t Similarly, a tensor of rank 2 is a set of quantities that are transformed as the 
products of vector components. 

J An o/iizsymmetrical spinor of rank 2 has only one independent component 
(ψ11 = ψ22 = 0, ψ12 = —ψ21). Its properties are the same as those of the quantity 
(41.4) considered above. It is consequently a scalar. 

11 According to (41.1) and (41.2), 

φΐ' = έΐφβφΐ9 γ* = β-ίφ/Ζψ*, 

where ψν and ψ2' are the components of the spinor in a coordinate system rotated 
through an angle φ about the z-axis relative to the original system. For the com-
ponents of the spinor of rank 2 , we therefore have 

Similar formulae relate the components of the vector ψχ — ίψ&, ψζ, ψχ+ίψν in the 
two systems of coordinates. 
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from the well-known law of transformation of vector components 
under any rotation of the coordinates, we can find by comparison with 
(41.9) the general law of transformation of spinors (i.e. the dependence 
of the transformation coefficients (41.3) on the angles of rotation), but 
we shall not pause to do so here. 

Lastly, in the general case of a particle with arbitrary spin, the wave 
function is a spinor of rank 2s symmetrical with respect to all its 
indices. It is easy to see that the number of independent components 
of such a spinor is equal to 2.$*4-1, as it should be: since the order of 
the indices in a symmetrical spinor has no significance, the only 
different components will be those whose indices include 2s ones and 
0 twos, 2s— 1 ones and 1 two, and so on up to 0 ones and 2s twos.1" 

§42. Polarisation of electrons 

An important property specific to particles with spin \ (which we 

shall refer to as electrons) is that, if the state of the electron is described 

by a wave function, then there is a direction in space along which 

the spin projection has the definite value sz = ~. (This direction may 

be called the direction of polarisation of the electron, and an electron 

in such a state may be said to be completely polarised.) By a suitable 

choice of the direction of the z-axis, we can always cause one compo-

nent (e.g. ψ2) of a given spinor ψ = j ^ ) ' ^ e w a v e function of a par-

ticle with spin y , to vanish. This is evident from the fact that a direction 

in space is determined by two quantities (for example, two angles in 

spherical polar coordinates), i.e. the number of disposable parameters 

is just equal to the number of quantities (the real and imaginary parts 

of the complex ψ2) which it is desired to make zero. If ψ2 = 0, the 

probability of the eigenvalue sz = — \ is zero. For a particle with 

t In mathematical terms, the symmetrical spinors of rank 1, 2, 3, . . . comprise 
all the irreducible representations of the rotation group (see the second footnote 
to §18). The dimensions of these representations are 25+1, taking all the values 1, 
2, 3, . . . when $ = 0, ^, 1, The representations given by the eigenfunctions 
ΨΣΜ of the orbital angular momentum (§18) are a particular case corresponding to 
dimensions 1, 3, 5, . . . . 
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s > \-, it would be impossible to make all except one component of 
the wave function vanish in this way, since there are too many of 
them. 

Let the z-axis be taken in the direction of polarisation of the electron. 
This will obviously also be the direction of the mean spin vector s, and 
its magnitude is -|. Let us determine the probabilities w± of the values 
s2, = ±~ of the spin projection on another direction (the z'-axis) at 
an angle θ to the z-axis. By taking the component of s along the z'-axis, 
we find that the mean value of the spin along this axis is ~sz, = γ cos Θ. 
From the definition of the probabilities w ± , 

= i ( w + - H > _ ) . 

Since w++w_ = 1, it follows that 

w+ = cos 2 | - 0 , w_ = sin2 \θ. (42.1) 

As well as the completely polarised states of the electron, there are 
also states which may be said to be partially polarised. These are 
described (as regards their spin properties) not by wave functions but 
only by density matrices, i.e. they are mixed states (with respect to 
spin); similar concepts for states of orbital motion of particles have 
been defined in §7. 

A natural means of describing such states appears if we first con-
sider the determination of the mean spin vector in a pure state (state 
of complete polarisation). From the definition of the operators of 
physical quantities, we have* for a state with wave function ψ 

(42.2) 

where the summation over the spin variable a is represented as a 
summation over spinor components; in this section the letters α and 
β denote spinor indices taking the values 1 and 2. The bold-face letter 

t In this section, as in §§40 and 41, we are not concerned with the coordinate 
dependence of the wave functions, and the spatial integration is therefore omitted 
from (42.2). The spinor ψ is then assumed normalised by the condition 

1νΊ2+ΐν>2Ι2 = 1. 
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where 
ρ 0 α = ψβψι*Μ (42.4) 

Evidently 

(ρ«Τ = ( Λ (42.5) 

and the normalisation condition for the wave functions gives 
ρ ΐ ι + ρ 2 2 = i. (42.6) 

In the general case of partial polarisation, the state of the electron 
is described by the polarisation density matrix 

which satisfies the conditions (42.5), (42.6) and determines s according 
to (42.3); unlike those for a pure state, however, the elements of this 
matrix are not products (42.4). The magnitude of the vector s can have 
values between 0 and ~. The value ^corresponds to complete polarisa-
tion, and the value 0 to the opposite case of an unpolarised state. 

The four complex quantities ρ*β are equivalent to eight real para-
meters, but owing to the five relations (42.5), (42.6) only three of them 
are independent. The real vector s likewise has three components. It 
is therefore clear that each set uniquely determines the other. Thus the 
polarisation state of a particle with spin \ is entirely determined by 
specifying the mean spin vector. 

The mean value of the z-component of the spin is 

σ will denote a "matrix vector" whose components are the Pauli 
matrices ax, oy, a2. According to (40.1), the effect of the spin operator 
s = -|σ is the transformation 

where the σα^ are matrix elements. We can therefore write the expres-
sion (42.2) as 

(42.3) 
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Hence we see that ρ 1 1 and ρ 2 2 are the probabilities of the eigenvalues 
sz — \ and sz = — \. The quantity ρ 1 2 is related to the mean values 
of sx and sy. Using the matrices σχ and oy from (40.6), we can easily 
prove that 

ρ 1 2 = sx-iSy. 

§43. A particle in a magnetic field 

A particle that has a spin also has a certain "intrinsic" magnetic 
moment μ. The corresponding quantum-mechanical operator is pro-
portional to the operator s, and can therefore be written as 

μ = μβ/s, (43.1) 

where s is the magnitude of the particle spin and μ a constant character-
ising the particle. The eigenvalues of the magnetic moment compon-
ent are μζ = μα Is. Hence we see that the coefficient μ (which is usually 
called just the magnitude of the magnetic moment) is the maximum 
possible value of μζ, reached when a = s. 

The ratio μ/hs gives the ratio of the intrinsic magnetic moment 
and the intrinsic angular momentum of the particle (when both are 
along the z-axis). For the ordinary (orbital) angular momentum, this 
ratio is e/2mc (see Mechanics andElectrodynamics,§66). The coefficient 
of proportionality between the intrinsic magnetic moment and the 
spin of the particle is not the same. For an electron it is — \e\/mc9 i.e. 
twice the usual value; we shall see later that this value can be obtained 
theoretically from Dime's relativistic wave equation. The intrinsic 
magnetic moment of the electron (spin -|) is consequently — μΒ, where 

μΒ = \e\hjlmc = 0.927Χ 10~ 2 0 erg/gauss. (43.2) 

This quantity is called the Bohr magneton. 
The magnetic moment of heavy particles is customarily measured 

in nuclear magnetons, defined as eh/2mpc with mp the mass of the 
proton. The intrinsic magnetic moment of the proton is found by 
experiment to be 2.79 nuclear magnetons, the moment being parallel 

11 

file:///e/hjlmc
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to the spin. The magnetic moment of the neutron is opposite to the 
spin, and is 1.91 nuclear magnetons. 

It should be noted that the quantities μ and s on the two sides of 
(43.1) are the same type of vector, as they should be: both are axial 
vectors (both being given by vector products of two polar vectors). 
A similar equation for the electric dipole moment d(d = constant Xs) 
would contradict the symmetry under inversion of coordinates: the 
relative sign of the two sides would be changed by the inversion.1" 

Let us ascertain the form of Schrodinger's equation for a particle 
moving in external electric and magnetic fields. In the classical theory, 
the Hamilton's function for a charged particle in an electromagnetic 
field has the form 

where Φ and A are the scalar and vector potentials of the field, and 
ρ is the generalised momentum of the particle (see Mechanics and 
Electrodynamics, §43). If the particle has no spin, the transition to 
quantum mechanics can be made in the usual manner; the generalised 
momentum must be replaced by the operator ρ = — /ft ν , and we 
obtain the Hamiltoniant 

If the particle has a spin, this procedure does not suffice. This is 
because the intrinsic magnetic moment of the particle interacts directly 
with the magnetic field. In the classical Hamilton's function this inter-

t Such an equation (and therefore the existence of an electric moment of an 
elementary particle) would also contradict the symmetry under time reversal: a 
change in the sign of the time does not alter the electric moment, but does change 
the sign of the spin (as is evident, for example, from the definitions of these 
quantities in orbital motion, that of d involving only the coordinates, whereas 
that of the magnetic moment also involves the velocity of the particle). 

t The generalised momentum is here denoted by the same letter ρ as the ordi-
nary momentum, and not by Ρ as in Mechanics and Electrodynamics, in order to 
emphasise that it corresponds to the same operator. 

(43.3) 
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action does not appear, since the spin itself, which is a purely quantum 
effect, vanishes when we pass to the limit of classical mechanics. The 
correct expression for the Hamiltonian is obtained by adding to (43.3) 
a term — μ · H, which corresponds to the energy of the magnetic mo-
ment μ in the field H f . Thus the Hamiltonian of a particle having a 
spin and in a magnetic field is 

(43.4) 

The equation Ηψ = Εψ for the eigenvalues of this operator is the 
required generalisation of Schrodinger's equation to the case of mo-
tion in a magnetic field. The wave function ψ in this equation is a 
spinor of rank 2^+1. 

§44. Motion in a uniform magnetic field 

Let us determine the energy levels of an electron in a constant 
uniform magnetic field. We take the z-axis in the direction of the 
field H, and write the vector potential of the field in the form 

Ax=-Hy9 Ay = A2 = 0; (44.1) 

it is then easily verified that curl A = H. The Hamiltonian (43.4) of 
the electron (with charge e = — \e\ and magnetic moment μ = — μΒ) 
becomes 

(44.2) 

First of all, we notice that the operator sz commutes with the 
Hamiltonian, since the latter does not contain the operators of the 
other components of the spin. This means that the z-component of 
the spin is conserved, and therefore that sz can be replaced by the 
eigenvalues sz = a. Then the spin dependence of the wave function 

t There should be no misunderstanding here caused by the use of the same 
letter for the field and the Hamiltonian, since the latter always has a circumflex 
over it. 

11* 
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becomes unimportant, and ψ in Schrodinger's equation can be taken 
as the ordinary coordinate function. For this function we have the 
equation 

(44.3) 

The Hamiltonian (44.2) does not contain the coordinates χ and ζ 
explicitly. The operators px and pz (of differentiation with respect to 
χ and z) therefore also commute with the Hamiltonian, i.e. the x- and 
z-components of the generalised momentum are conserved. We accord-
ingly seek ψ in the form 

ψ = £('/Λ)(ΑΒ*+Λ*)χΟ;)β (44.4) 

The eigenvalues px and pz take all values from — ° o to + Since 
Az = 0, the z-component pz of the generalised momentum is equal 
to the ordinary momentum component: pz = mvz. Thus the velocity 
of the electron in the direction of the field can take any value; we can 
say that the motion along the field is "not quantised". 

Substituting (44.4) in (44.3), we obtain the following equation for 
the function χ: 

with the notation y0 = — cpx/eH and 

ω Η = \e\Hjmc. (44.5) 

This equation is formally identical with Schrodinger's equation (25.6) 
for a linear oscillator, oscillating with frequency ωΗ about the point 
y = y0. Hence we can conclude immediately that the constant 
Ε—ωΗο—ρ\\2τη, which takes the part of the oscillator energy, can 
have the values {η-\-~)ΗωΗ, where η is any integer. 

Thus we obtain the following expression for the energy levels of an 
electron in a uniform magnetic field: 

£ = (w+| + σ)Ηω H+Pz/2m. (44.6) 

file:///e/Hjmc
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t This problem was first investigated by L. D. Landau (1930) in connection with 
the study of electron diamagnetism in metals. 

The first term in (44.6) gives the discrete energy levels, corresponding 
to motion in a plane perpendicular to the field; they are called Landau 
levels? 



C H A P T E R 6 

I D E N T I T Y OF PARTICLES 

§45. The principle of indistinguishability of similar particles 

In classical mechanics, identical particles (electrons, say) do not 
lose their "individuality", despite the identity of their physical proper-
ties. For we can imagine the particles in a physical system at some 
instant to be "numbered", and follow the subsequent motion of 
each of these in its path; then at any instant the particles can be 
identified. 

In quantum mechanics the situation is entirely different. We have 
already mentioned several times that, by virtue of the uncertainty 
principle, the concept of the path of an electron ceases to have any 
meaning. If the position of an electron is exactly known at a given 
instant, its coordinates have no definite values even at the next instant. 
Hence, by localising and numbering the electrons at some instant, we 
make no progress towards identifying them at subsequent instants; if 
we localise one of the electrons, at some other instant, at some 
point in space, we cannot say which of the electrons has arrived at 
this point. 

Thus, in quantum mechanics, there is in principle no possibility of 
separately following each of a number of similar particles and thereby 
distinguishing them. We may say that, in quantum mechanics, iden-
tical particles entirely lose their "individuality". The identity of the 
particles with respect to their physical properties is here very far-
reaching: it results in the complete indistinguishability of the particles. 

This principle of the indistinguishability of similar particles, as it is 

154 
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called, plays a fundamental part in the quantum theory of systems 
composed of identical particles. Let us start by considering a system 
of only two particles. Because of the identity of the particles, the states 
of the system obtained from each other by merely interchanging the 
two particles must be completely equivalent physically. This means 
that, as a result of this interchange, the wave function of the system 
can change only by an unimportant phase factor. Let £2) be the 
wave function of the system, ξ± and | 2 conventionally denoting the 
three coordinates and the spin projection for each particle. Then we 
must have 

h) = έ«ψ(ξ2, Si), 

where α is some real constant. By repeating the interchange, we return 
to the original state, while the function ψ is multiplied by e2i*. Hence 
it follows that e2i* = 1, or = ± 1. Thus 

I 2 ) = ± ^ ( 1 2 , ί ΐ ) . 

We thus reach the result that there are only two possibilities: the 
wave function is either symmetrical (i.e. it is unchanged when the 
particles are interchanged) or antisymmetrical (i.e. it changes sign 
when this interchange is made). It is obvious that the wave functions 
of all the states of a given system must have the same symmetry; 
otherwise, the wave function of a state which was a superposition of 
states of different symmetry would be neither symmetrical nor 
antisymmetrical. 

This result can be immediately generalised to systems consisting of 
any number of identical particles. For it is clear from the identity 
of the particles that, if any pair of them has the property of being 
described by, say, symmetrical wave functions, any other pair of such 
particles has the same property. Hence the wave function of identical 
particles must either be unchanged when any pair of particles are 
interchanged (and hence when the particles are permuted in any 
manner), or change sign when any pair are interchanged. In the first 
case we speak of a symmetrical wave function, and in the second case 
of an antisymmetrical one. 
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The property of being described by symmetrical or antisymmetrical 
wave functions depends on the nature of the particles. Particles 
described by antisymmetrical functions are said to obey Fermi-Dirac 
statistics (or to be fermions), while those which are described by sym-
metrical functions are said to obey Bose-Einstein statistics (or to be 
bosons)? 

We shall see later (§87) that, according to the laws of relativistic 
quantum mechanics, the statistics obeyed by particles is uniquely 
related to their spin: particles with half-integral spin are fermions, 
and those with integral spin are bosons. 

The statistics of complex particles is determined by the parity of the 
number of elementary fermions entering into their composition. 
For an interchange of two identical complex particles is equivalent to 
the simultaneous interchange of several pairs of identical elementary 
particles. The interchange of bosons does not change the wave function, 
while the interchange of fermions changes its sign. Hence complex 
particles containing an odd number of elementary fermions obey 
Fermi statistics, while those containing an even number obey Bose stat-
istics. This result is, of course, in agreement with the above rule, since 
a complex particle has an integral or a half-integral spin according as 
the number of particles with half-integral spin entering into its 
composition is even or odd. 

Thus atomic nuclei of odd atomic weight (i.e. containing an odd 
number of neutrons and protons) obey Fermi statistics, and those of 
even atomic weight obey Bose statistics. For atoms, which contain both 
nuclei and electrons, the statistics is evidently determined by the parity 
of the sum of the atomic weight and the atomic number. 

Let us consider a system composed of Ν identical particles, whose 
mutual interaction can be neglected. Let ψχ9 ψ2,... be the wave func-

t This terminology refers to the statistics which describes a perfect gas composed 
of particles with antisymmetrical and symmetrical wave functions respectively. 
In actual fact we are concerned here not only with a different statistics, but essen-
tially with a different mechanics. Fermi statistics was proposed by E. Fermi for 
electrons in 1926, and its relation to quantum mechanics was elucidated by P. A. 
M. Dirac (1926). Bose statistics was proposed by S. N. Bose for light quanta, 
and generalised by A. Einstein (1924). 
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tions of the various stationary states which each of the particles sepa-
rately may occupy. The state of the system as a whole can be defined 
by giving the numbers of the states which the individual particles 
occupy. The question arises how the wave function ψ of the whole 
system should be constructed from the functions ψΐ9 ψ2,... . 

Let pl9p29 ...9pN be the numbers of the states occupied by the 
individual particles (some of these numbers may be the same). For a 
system of bosons, the wave function ψ(ξΐ9 ξ29..., ξΝ) is given by a 
sum of products of the form 

%*(£ι) ΨΡ2^2) . · . Vpjtfs), (45.1) 

with all possible permutations of the different suffixes ρχ9 p2,...; 
this sum clearly possesses the required symmetry property. Thus, for 
example, for a system of two particles in different states (ρχ ^ P2) 

h) = [ΝΛ(£ι)ΝΛ(ίϊ)+ΝΝ,(£2) V f t(fi)]/V2. (45.2) 

The factor l/Λ/2 is introduced for normalisation purposes; all the 
functions rpl9 ip2,... are orthogonal and are supposed normalised. 
In the general case of a system containing an arbitrary number Ν of 
particles, the normalised wave function is 

Σψ^ψ^.,.ψ^ξΝΐ (45.3) 

where the sum is taken over all permutations of the different suffixes 
pl9 p29..., pN9 and the numbers Nt show how many of these suffixes 
have the same value / (with ΣΝί = Ν). In the integration of | ψ | 2 over 
ξΐ912,..., ξΝ9 all terms vanish except the squared modulus of each 
term1"; since the total number of terms in the sum (45.3) is evidently 

Ν\/Νχ\Ν2\ 

the normalisation factor in (45.3) is obtained. 

t The integration over I is conventionally understood in §§45-47 as including 
integration over the coordinates and summation over σ. 
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For a system of fermions, the wave function ψ is an antisymmetri-
cal combination of the products (45.1). For a system composed of two 
particles we have 

ψ = [ψρΧ^)ψΡ^2)-ψΡΧ^)ψΡΜι)]ΐν2. (45.4) 

For the general case of Ν particles, the wave function can be written 
in the form of a determinant 

Ψ = VA(SI) %>*(&) (45.5) 

An interchange of two particles corresponds to an interchange of two 
columns of the determinant, as a result of which the latter changes 
sign. 

The following important result is a consequence of the expression 
(45.5). If among the numbers px, p2,... any two are the same, two rows 
of the determinant are the same, and it therefore vanishes identically. 
It will be different from zero only when all the numbers p u /?2,... 

are different. Thus, in a system consisting of identical fermions, no two 
(or more) particles can be in the same state at the same time. This is 
called PaulVsprinciple', it was established by W. Pauli in 1925. 

§46. Exchange interaction 

The fact that Schrodinger's equation does not take account of the 
spin of particles does not invalidate this equation or the results ob-
tained by means of it. This is because the electrical interaction of the 
particles does not depend on their spins.1" Mathematically, this means 
that the Hamiltonian of a system of electrically interacting particles 
(in the absence of a magnetic field) does not contain the spin operators, 
and hence, when it is applied to the wave function, it has no effect on 

t This is true only so long as we consider the non-relativistic approximation. 
When relativistic effects are taken into account, the interaction of charged par-
ticles does depend on their spin. 
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the spin variables. Hence Schrodinger's equation is actually satisfied 
by each component of the wave function, i.e. the wave function of the 
system of particles can be written in the form of a product 

£2, · . . ) = x(<*u tf2, · · ·) ΦΟι> * 2, · · ·)> (46.1) 

where the function φ depends only on the coordinates of the particles 
and the function χ only on their spins. We call the former a coordinate 
or orbital wave function, and the latter a spin wave function. Schro-
dinger's equation essentially determines only the coordinate function 
φ, the function χ remaining arbitrary. In any instance where we are 
not interested in the actual spin of the particles, we can therefore use 
Schrodinger's equation and regard as the wave function the coordinate 
function alone, as we have done hitherto. 

However, despite the fact that the electrical interaction of the par-
ticles is independent of their spin, there is a peculiar dependence of the 
energy of the system on its total spin, arising ultimately from the prin-
ciple of indistinguishability of similar particles. 

Let us consider a system consisting of only two identical particles. 
By solving Schrodinger's equation we find a series of energy levels, to 
each of which there corresponds a definite symmetrical or antisym-
metrical coordinate wave function φ(τι, r 2 ) . For, by virtue of the 
identity of the particles, the Hamiltonian (and therefore the Schrodin-
ger's equation) of the system is invariant with respect to interchange 
of the particles. If the energy levels are not degenerate, the function 
φ(τΐ9 r 2 ) can change only by a constant factor when the coordinates 
ri and r 2 are interchanged; repeating this interchange, we see that this 
factor can only be1" ± 1. 

Let us first suppose that the particles have zero spin. The spin factor 
for such particles is absent altogether, and the wave function reduces 
to the coordinate function φ(τΐ9 r 2 ), which must be symmetrical (since 
particles with zero spin obey Bose statistics). Thus not all the energy 
levels obtained by a formal solution of Schrodinger's equation can 

t When there is degeneracy we can always choose linear combinations of the 
functions belonging to a given level, such that this condition is again satisfied. 
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actually exist; those to which antisymmetrical functions φ correspond 
are not possible for the system under consideration. 

The interchange of two similar particles is equivalent to the opera-
tion of inversion of the coordinate system (the origin being taken to 
bisect the line joining the two particles). On the other hand, the 
result of inversion is to multiply the wave function φ by (— l) z, where 
/ is the orbital angular momentum of the relative motion of the two 
particles (see §19). By comparing these considerations with those given 
above, we conclude that a system of two identical particles with zero 
spin can have only an even orbital angular momentum. 

Next, let us suppose that the system consists of two particles with 
spin \ (say, electrons). Then the complete wave function of the system 
(i.e. the product of the function φ(Γχ, r 2) and the spin function χ(<τι, <r2)) 
must certainly be antisymmetrical with respect to an interchange of the 
two electrons. Hence, if the coordinate function is symmetrical, the 
spin function must be antisymmetrical, and vice versa. We shall 
write the spin function in spinor form, i.e. as a spinor χ*β of rank 
two, each of whose indices corresponds to the spin of one of the 
electrons. A symmetrical spinor (χ*β = χ^) corresponds to a function 
symmetrical with respect to the spins of the two particles, and an 
antisymmetrical spinor (χαβ = —χβ*) to an antisymmetrical function. 
We know, however, that a symmetrical spinor of rank two describes 
a system with total spin unity, while an antisymmetrical spinor reduces 
to a scalar, corresponding to zero spin. 

Thus we reach the following conclusion. The energy levels to which 
there correspond symmetrical solutions φ(τι9 r 2) of Schrodinger's 
equation can actually occur when the total spin of the system is zero, 
i.e. when the spins of the two electrons are "antiparallel", giving a sum 
of zero. The values of the energy belonging to antisymmetrical func-
tions φ(τΐ9 r2), on the other hand, require a value of unity for the 
total spin, i.e. the spins of the two electrons must be "parallel". 

In other words, the possible values of the energy of a system of 
electrons depend on their total spin. For this reason we can speak 
of a peculiar interaction of the particles which results in this depend-
ence. This is called exchange interaction. It is a purely quantum effect, 
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which entirely vanishes (like the spin itself) in the passage to the 
limit of classical mechanics. 

§47. Second quantisation. The case of Bose statistics 

In the theory of systems consisting of a very large number of 
identical particles there is a widely used method of considering the 
problem, known as second quantisation. This method is necessary 
in relativistic theory, where we have to deal with systems in which the 
number of particles is itself variable.1" 

Let ψi(£), ^2 (1) , . . . be some complete set of orthogonal and normal-
ised wave functions of stationary states of a single particle. These may 
be taken as plane waves, i.e. the wave functions of a free particle 
having definite values of the momentum (and spin projection); in 
order to make the spectrum of states discrete we shall consider the 
motion of particles in a large but finite volume Ω, as described at the 
end of §27. 

In a system of free particles, the particle momenta are separately 
conserved. The occupation numbers of the states are therefore also 
conserved, i.e. the numbers Ni9 N2,... which show how many particles 
are in each of the states ψΐ9 ψ2,.... In a system of interacting particles, 
the momentum of each particle is not conserved, and so the occupation 
numbers are not conserved. For such a system we can consider only 
the probability distribution of the various values of the occupation 
numbers. Let us seek to construct a mathematical formalism in 
which the occupation numbers (and not the coordinates and spin 
projections of the particles) play the part of independent variables. 

In this formalism, the state of the system is described by what is 
called a wave function in occupation-number space, denoted by 
Φ(Ν±9 N2 t) in order to emphasise the difference from the ordinary 
coordinate-spin wave function Ψ(ξι9 ξ2,..., ξΝ; t). The squared modulus 
IΦ | 2 determines the probability of the various values of the numbers 
NUN29... . 

t The method of second quantisation was developed by P. A. M. Dirac (1927) 
for photons in radiation theory, and later extended to fermions by E. Wigner and 
P. Jordan (1928). 
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In accordance with this choice of the independent variables, the 
operators of the various physical quantities (including the Hamiltonian 
of the system) must be formulated in terms of their action on functions 
of the occupation numbers. Such a formulation can be obtained on the 
basis of the usual matrix representation of operators. The operator 
matrix elements must be considered in relation to the wave functions 
of the stationary states of a system of non-interacting particles. Since 
these states can be described by specifying definite values of the occu-
pation numbers, this will also show the nature of the action of the 
operators on these variables. 

Let us first consider systems of particles obeying Bose statistics. Let 
fjp be the operator of some quantity pertaining to the ath. particle, 
i.e. acting only on functions of f a . We introduce the operator 

which is symmetrical with respect to all the particles (the summation 
being over all particles) and determine its matrix elements with respect 
to the wave functions (45.3). First of all, it is easy to see that the matrix 
elements will be different from zero only for transitions which leave 
the numbers JVi, N2, . . . unchanged (diagonal elements) and for 
transitions where one of these numbers is increased, and another 
decreased, by unity. For, since each of the operators / f l

( 1 ) acts on only 
one function in the product ψΡι(ξx) ψΡζ(ξ2) · · · %N(£N\ i t s matrix 
elements can be different from zero only for transitions whereby the 
state of a single particle is changed; this, however, means that the 
number of particles in one state is diminished by unity, while the 
number in another state is correspondingly increased. The calculation 
of these matrix elements is in principle very simple; it is easier to do 
it oneself than to follow an account of it. Hence we shall give only the 
result of the calculation. The non-diagonal elements are 

(47.1) 

(Nh Nk— 1 I \N,-1, Nk) = fPViWk). (47.2) 

We shall indicate only those suffixes with respect to which the matrix 



§47 Second quantisation. The case of Bose statistics 163 

element is non-diagonal, omitting the remainder for brevity. Here 
fiJP is the matrix element 

= J ^ ) / ( V ( L ) d | . (47.3) 

Since the operators differ only in the naming of the variable on 
which they act, the integrals (47.3) are independent of a, and this 
suffix is therefore omitted. The diagonal matrix elements of are 
the mean values of the quantity in the states ψΝιΝζ.... Calcula-
tion gives 

i 

We now introduce the operators ai9 which play a leading part in 
the method of second quantisation; they act, not on functions of the 
coordinates, but on functions of the occupation numbers. By defini-
tion, the operator at acting on the function Φ(Νχ, N2, . . . ) decreases 
the value of the variable Nt by unity, and at the same time it multi-
plies the function by Λ/Ν^. 

N2,...9Ni9...) = ViNd Φ(Νΐ9 N29 ..., Ni-1, . . . ) . (47.5) 

We can say that the operator a{ diminishes by one the number of 
particles in the ith state; it is therefore called a particle annihilation 
operator. It can be represented in the form of a matrix whose only 
non-zero element is 

<JV I - l | e l | JV ,>= v W<. (47.6) 

The operator af, which is the Hermitian conjugate of ai9 is, by 
definition (see (11.9)), represented by a matrix whose only non-zero 
element is 

(ΝΛ | ^ | ^ - 1 ) = (Nt-1 k-1N,)* = Vty. (47.7) 

This means that, when acting on the function Φ(ΛΓι, N2, . . . ) , it in-
creases the number Nt by unity: 

άΪΦ(Νΐ9 N29 ..., Ni9 . . . ) = V W + 1 ) φ(Νι, N2, ..., N>+1, . . . ) . 
(47.8) 

In other words, the operator df increases by one the number of 
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particles in the ith state, and is therefore called a particle creation 
operator. 

The product of operators dfdi9 acting on the wave function, must 
multiply it by a constant simply, leaving unchanged all the variables 
Ni9 N2, . . . : the operator at diminishes N{ by unity, and af then re-
stores it to its original value. Direct multiplication of the matrices 
(47.6) and (47.7) shows that afai is represented, as we should expect, 
by a diagonal matrix whose diagonal elements are iVf. We can write 

dfdi=Ni. (47.9) 

Similarly, we find that 
ά fit =Ni+\. (47.10) 

The difference of these equations gives the commutation rule for the 
operators at and af: 

afit-dfOi = 1. (47.11) 

The operators with / and k different act on different variables (N( and 
Nk)9 and of course commute: 

didk — akai = 09 didf — afai = 0 (i ^ k). (47.12) 

From the above properties of the operators di9 af it is easy to see 
that the operator 

= (47.13) 
Uk 

is the same as the operator (47.1). For all the matrix elements calcu-
lated from (47.6), (47.7) are the same as the elements (47.2). This 
is a very important result. In formula (47.13), the quantities fjp are 
simply numbers. Thus we have been able to express an ordinary 
operator, acting on functions of the coordinates, in the form of an oper-
ator acting on functions of new variables, the occupation numbers Nt. 

The result which we have obtained is easily generalised to operators 
of other forms. Let 

where f$ is the operator of a physical quantity pertaining to two 
particles at once, and hence acts on functions of ξα and Sb. Similar 
calculations show that this operator can be expressed in terms of the 

(47.14) 
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lhe formulae can be similarly generalised to operators ot any other 
form symmetrical with respect to all the particles. 

Using these formulae, we can express in terms of the operators 
di9 df also the Hamiltonian of the physical system of Ν interacting 
particles that is actually being considered. The Hamiltonian of such 
a system is, of course, symmetrical with respect to all the particles. 
For example, if the interaction in the system consists of interactions 
between each pair of particles, the Hamiltonian is 

operators di9 af by 

(47.15) 

where 

(47.16) 

Here is the part of the Hamiltonian which depends on the co-
ordinates of only one particle, i.e. the free-particle Hamiltonian: 

# ω =-(Α*/2*ι)Δ β . (47.17) 

The function ϋ(2\τα9 rb) is the energy of interaction of two particles. 
Applying formulae (47.13) and (47.15) to (47.16), we obtain 

(47.18) 

This gives the required expression for the Hamiltonian in the form 
of an operator acting on functions of the occupation numbers. 

For a system of non-interacting particles, only the first term in the 
expression (47.18) remains: 

(47.19) 
ι, κ 

If the functions ψ{ are taken to be, as agreed, the eigenfunctions of the 
Hamiltonian of a free particle, the matrix Hjp is diagonal, and 
its diagonal elements are the eigenvalues ε,, of the energy of the par-
ticle. Thus 

# = Σ * Α + 4 ; (47.20) 

I 

replacing the operator afai by its eigenvalues (47.9), we have for the 
12 



This is easily proved by direct substitution of the ^-operators (47.22). 
The operator ψ+ψ, constructed from the ^-operators in the same 

way as the product ψ*ψ giving the probability density for a particle 
in a state with wave function ip9 is called the particle density operator. 
The integral 

Ν = $ψ+ψ άξ (47.24) 

represents in the second quantisation formalism the operator of the 
total number of particles in the system. For, substituting the y-opera-
tors in the form (47.22) and using the normalisation and orthogonality 
of the wave functions ipi9 we have 

# = (47.25) 

Each term in this sum is the operator of the number of particles in the 

t Attention is drawn to the analogy between the expressions (47.22) and the 
expansion ψ = Σα&ι of an arbitrary wave function in terms of a complete set of 
functions. Here the expansion is, so to speak, quantised afresh. This is the reason 
for calling the method the second quantisation method. 
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(47.21) 

a trivial result which could have been foreseen. 
The formalism of second quantisation can be put in a more com-

pact form by introducing the operators 

ψ(ξ) = Σψ&)ά» Ψ+(ξ) = ΣψΚξ)άΐ, (47.22) 
I I 

where the variables ξ are regarded as parameters. By what has been 
said above concerning the operators di9 af9 it is clear that the operator 
ψ decreases the total number of particles in the system by one, while ψ+ 
increases it by one.1* 

By means of the ^-operators, the Hamiltonian (47.18) can be written 
in the form 

(47.23) 

energy levels of the system the expression 
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12* 

ith state: according to (47.9), its eigenvalues are equal to the occupa-
tion numbers Ni9 and the sum of all these numbers is the total number 
of particles in the system. For systems containing a specified number 
of particles, these statements are trivial, as are the properties of the 
Hamiltonian (47.19) of a system of free particles. We shall see, how-
ever, that their generalisation in the relativistic theory yields new 
results that are by no means trivial. 

§48. Second quantisation. The case of Fermi statistics 

The basic theory of the method of second quantisation remains 
wholly unchanged for systems of identical fermions, but the actual 
formulae for the matrix elements of quantities and for the operators 
at are naturally different. 

We shall not pause here to give the details of the calculations, but 
merely emphasise the important points in them, where there are differ-
ences from those in §47. 

The wave function yNiNi . . . now has the form (45.5). As already 
mentioned, the numbers p\9 p29 . . . which number the occupied states 
must all be different, since otherwise the determinant would vanish. 
In other words, the occupation numbers Nt can take only the values 
Oand 1. 

Because of the antisymmetry of the function (45.5), the question of 
its sign arises first of all. This question did not arise in the case of Bose 
statistics, since, because of the symmetry of the wave function, its 
sign, once chosen, was preserved under all permutations of the par-
ticles. In order to make definite the sign of the function (45.5), we can 
agree to choose it as follows. We number successively, once and for 
all, all the states y f. We then complete the rows of the determinant 
(45.5) so that p1 < p2 < p3 < ... < pN, whilst in the successive col-
umns we have functions of the different variables in the order ξΐ9 

| 2 , ..., ξΝ. The sign of the wave function will thus depend on the 
set of numbers p±9 /?2, . . . , i.e. on all the occupation numbers. 

It is then found that the signs of the matrix elements of the particle 
annihilation and creation operators also depend on these numbers: 
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By multiplying these matrices it can be shown that the products 
afdi and dflf are diagonal, with 

afdi = Ni9 dpf = 1 -Ni9 (48.2) 

and their sum is 
didf + dfdi = 1. (48.3) 

It should be noticed that the vanishing of the product dfdt when 
iV,. = 0 and of dfif when Nt = 1 is to be expected. In these products, 
the operator on the right acts first, but a particle in the fth state cannot 
be annihilated if it does not exist (N ; =0) and according to Pauli's prin-
ciple an electron in the ith state cannot be created if this state is already 
occupied, i.e. if Nt = 1. For the same reason, it is obvious that 

OA = 0, dfaf = 0. (48.4) 

For any pair of operators with different i and k9 we have 

dflk + ajA = 0, dtdt + dtdf = 0, dfit + dtat = 0 (i * k)\ 

(48.5) 

that is, they all anticommute, the product changing sign when the 
factors are transposed. This difference from the case of Bose statistics 
is perfectly natural. In the latter case, the operators dt and dk were 
completely independent; each of the operators dt acted only on a 
single variable Ni9 and the result of this action did not depend on the 
values of the other occupation numbers. In the case of Fermi statistics, 
however, the result of the action of the operator d{ depends not only 
on the number N{ itself, but also on the occupation numbers of all 
the preceding states. Hence the action of the various operators di9 ak 

cannot be considered independent. 
When the properties of the operators di9 df have thus been estab-

lished, all the remaining formulae (47.13)-(47.25) remain valid. 

(48.1) 

the operators have to be defined as matrices having a single non-zero 
element 

i-l 



C H A P T E R 7 

THE ATOM 

§49. Atomic energy levels 

In the non-relativistic approximation, the stationary states of the 
atom are determined by Schrodinger's equation for the system of 
electrons, which move in the Coulomb field of the nucleus and inter-
act electrically with one another. As we know, for a system of particles 
in a centrally symmetric external field the total orbital angular mo-
mentum L and the parity of the state are conserved. Hence each 
stationary state of the atom will be characterised by a definite value 
of the orbital angular momentum L and by its parity. Moreover, 
because of the exchange interaction described in §46, every stationary 
state of the atom is characterised also by a definite value of the total 
spin S of the electrons. 

Thus, in the non-relativistic approximation, the energy levels of the 
atom are classified by means of the values of L and S and of the parity 
(the converse is of course not true: the values of these quantities by 
themselves do not uniquely determine the energy). Each such energy 
level is degenerate in accordance with the different possible directions 
in space of the vectors L and S. The degrees of degeneracy with respect 
to these directions are respectively 2L+1 and 25 + 1 . Consequently, 
the total degree of degeneracy of a level with given L and S is equal 
to the product (2L+1) (2S +1). 

In fact, however, there are relativistic effects in the electromagnetic 
interaction of electrons; these effects depend on the spins of the elec-
trons, and will be further considered in §51. They have the result that 
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the energy of the atom depends not only on the absolute magnitudes 
of the vectors L and S but also on their relative positions. Strictly 
speaking, when the relativistic interactions are taken into account the 
orbital angular momentum L and the spin S of the atom are not 
separately conserved. Only the total angular momentum J = L + S is 
conserved; this is a universal and exact law which follows from the 
isotropy of space relative to a closed system. For this reason, the exact 
energy levels of the atom must be characterised by the values / of the 
total angular momentum. 

However, if the relativistic effects are comparatively small (as hap-
pens in many cases), they can be allowed for as a perturbation. Under 
the action of this perturbation, a level with given L and S is "split" 
into a number of distinct (though close) levels, which differ in the value 
of the total angular momentum J. These levels are determined (in the 
first approximation) by the appropriate secular equation (§33), while 
their wave functions (in the zeroth approximation) are definite linear 
combinations of the wave functions of the initial degenerate level with 
the given L and S. In this approximation we can therefore, as before, 
regard the absolute values of the orbital angular momentum and spin 
(but not their directions) as being conserved, and characterise the 
levels by the values of L and S also. 

Thus, as a result of the relativistic effects, a level with given values 
of L and S is split into a number of levels with different values of / . 
This splitting is called the fine structure (or the multiplet splitting) of 
the level. As we know, J takes values from L+S to \L—S\; hence a 
level with given L and S is split into 2S+1 (if L > S) or 2L+1 (if 
L < S) distinct levels. Each of these is still degenerate with respect to 
the directions of the vector J; the degree of this degeneracy is 2 /+1. 1 " 

There is a generally accepted notation to denote the atomic energy 
levels (or, as they are called, the spectral terms of the atoms), similar 
to that used for the states of individual particles with definite values 
of the angular momentum (§29): states with different values of the 

t The fine structure of energy levels in the hydrogen atom has certain special 
features (see §94). 
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total orbital angular momentum L are denoted by capital Latin letters, 
as follows: 

L = 0 1 2 3 4 5 . . . 

S Ρ D F G Η ... 

Above and to the left of this letter is placed the number 2 5 + 1 , called 
the multiplicity of the term (though it must be borne in mind that this 
number gives the number of fine-structure components of the level 
only when L S)? Below and to the right of the letter is placed the 
value of the total angular momentum J. Thus the symbols 2 P 1 / 2 , 2 P 3 / 2 

denote levels with L = 1, S = \ , J = \ a n d -§-. 

§50. Electron states in the atom 

An atom with more than one electron is a complex system of mutu-
ally interacting electrons moving in the field of the nucleus. For such 
a system we can, strictly speaking, consider only states of the system 
as a whole. Nevertheless, it is found that we can, with fair accuracy, 
introduce the idea of the states of each individual electron in the 
atom, as being the stationary states of the motion of each electron 
in some effective centrally symmetric field due to the nucleus and to 
all the other electrons. These fields are in general different for differ-
ent electrons in the atom, and they must all be defined simultaneously, 
since each of them depends on the states of all the other electrons. 
Such a field is said to be self-consistent. 

Since the self-consistent field is centrally symmetric, each state of 
the electron is characterised by a definite value of its orbital angular 
momentum /. The states of an individual electron with a given / are 
numbered (in order of increasing energy) by the principal quantum 
number n, which takes the values η = / + 1 , /-f 2, . . . ; this choice of 
the order of numbering is made in accordance with what is usual for 
the hydrogen atom. However, it must be noticed that the sequence 
of levels of increasing energy for various I in complex atoms is in 

t The levels with 2 S + 1 = 1, 2, 3, . . . are called singlet, doublet, triplet, etc. 
levels. 
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general different from that found in the hydrogen atom. In the latter, 
the energy is independent of /, so that the states with larger values of 
η always have higher energies. In complex atoms, on the other hand, 
the level with η = 5, / = 0, for example, is found to lie below that 
with η = 4, / = 2 (this is discussed in more detail in §52). 

The states of individual electrons with different values of η and / are 
customarily denoted by a figure which gives the value of the principal 
quantum number, followed by a letter which gives the value of /: f 

thus 4d denotes the state with η = 4, / = 2. A complete description 
of the atom demands that, besides the values of the total L, S and 7, 
the states of all the electrons should also be enumerated. Thus the 
symbol Is 2p SP0 denotes a state of the helium atom in which L = 1, 
S = 1, / = 0 and the two electrons are in the l,y and 2p states. If 
several electrons are in states with the same / and n, this is usually 
shown for brevity by means of an index: thus 3p2 denotes two electrons 
in the 3p state. The distribution of the electrons in the atom among 
states with different / and η is called the electron configuration. 

For given values of η and /, the electron can have different values 
of the projections of the orbital angular momentum (m) and of the 
spin (OR). For a given /, the number m takes 2/+1 values; the number a 
is restricted to only two values, ± \ . Hence there are altogether 
2(2/+1) different states with the same η and /; these states are said 
to be equivalent. According to Pauli's principle there can be only one 
electron in each such state. Thus at most 2(2/+1) electrons in an 
atom can simultaneously have the same η and /.'An assembly of elec-
trons occupying all the states with the given η and / is called a closed 
shell of the type concerned. 

The difference in energy between atomic levels having different L and 
S but the same electron configuration is due to the electrostatic inter-
action of the electrons (we here ignore the fine structure of each 
multiplet level). These energy differences are usually small, and several 
times less than the distances between the levels of different configura-
tions. The following empirical principle (Hund's rule) is known con-

t Another terminology often used is that in which electrons with principal 
quantum numbers η = 1, 2, 3, . . . are said to belong to the K, L, M, . . . shells. 
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cerning the relative position of levels with the same configuration but 
different L and S: 

The term with the greatest possible value of S (for the given electron 
configuration) and the greatest possible value of L (for this S) has the 
lowest energy. 

We shall show how the possible atomic terms can be found for a 
given electron configuration. If the electrons are not equivalent, the 
possible values of L and S are determined immediately from the rule 
for the addition of angular momenta. Thus, for instance, with the 
configurations np, n'p (n, n' being different) the total angular momen-
tum L can take the values 2, 1,0, and the total spin S = 0, 1; combin-
ing these, we obtain the terms 1 , 3 .S, 1,ZP, 1 , 3 2λ 

For equivalent electrons, however, restrictions imposed by Pauli's 
principle considerably reduce the number of possible terms. Let us 
consider, for example, a configuration np2. For / = 1 (the ρ state), the 
projection m of the electron orbital angular momentum can take the 
values m = 1, 0, — 1, so that there are six possible states, with the 
following values of m and σ: 

( i )o , i ( c ) - i , i 
« Μ , - i (&')o,-i ( o - i , - i . 

Two electrons can be one in each of any two of these states. As a 
result we obtain states of the atom with the following values of the 
projections ML = Em, Ms = Σο of the total orbital angular mo-
mentum and spin: 

(α+α') 2,0 (α+b) 1, 1 (α+c) 0, 1 

(α+V) 1, 0 ( Λ + Ο 0, 0 

+ 1, 0 (α' + c) 0, 0 

(b+V) 0, 0. 

The states with ML or Ms negative need not be written out, since 
they give nothing different. The presence of a state with ML = 2, 
Ms = 0 shows that there must be a XD term, and to this term there 
must correspond one state (1,0) and one (0, 0). Next, there remains 
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a state with (1, 1), so that there must be a 3 P term; states (0, 1), (1, 0) 
and (0, 0) correspond to this. Finally, there remains one state (0, 0) 
corresponding to a XS term. Thus, for a configuration of two equi-
valent ρ electrons, the only possibilities are one term of each of the 
types Ή , 3 P, W. 

For the configuration with the greatest possible number of equiva-
lent electrons (i.e. for a closed shell), the electron angular momenta 
compensate each other, and the state lS is always the only one possible. 
Like terms always correspond to configurations which differ in that 
one of them has as many electrons as the other lacks to form a closed 
shell (for example, the configuration np* has terms of the same types 
as those found above for np2). This is an evident result of the fact 
that the absence of an electron from the shell can be regarded as a 
"hole", whose state is defined by the same quantum numbers as the 
state of the missing electron. 

§51. Fine structure of atomic levels 

As has already been mentioned, the dependence of the Hamiltonian 
of an atom on the electron spin operators appears only when relativistic 
effects are taken into account, i.e. effects that become zero in the 
limit c o o . We shall return in §94 to the origin of the relativistic 
terms in the Hamiltonian, and for the present describe the general 
form of these terms by means of their effects. 

It is found that the relativistic terms in the Hamiltonian of an atom 
fall into two classes. One of these contains terms linear with respect 
to the spin operators of the electrons, while the other includes quad-
ratic terms. The former correspond to the interaction between the 
intrinsic magnetic moments of the electrons and the magnetic mo-
ments of their orbital motion (this interaction is called spin-orbit 
interaction), while the latter correspond to the interaction between 
the magnetic moments of the electrons {spin-spin interaction). Both 
interactions are of the same order (the second) with respect to v/c, the 
ratio of the velocity of the electrons to that of light; in practice, the 
spin-orbit interaction considerably exceeds the spin-spin interaction 
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in heavy atoms. This is because the spin-orbit interaction increases 
rapidly with the atomic number, whereas the spin-spin interaction is 
essentially independent of Z. This is evident from the nature of the 
spin-spin interaction, since this is a direct interaction between elec-
trons and is unaffected by the field of the nucleus. 

The spin-orbit interaction operator is of the form 

(the summation being over all the electrons in the atom), where s a are 
the spin operators of the electrons, \ are the operators of the orbital 
angular momentum of the electrons, and aa are functions of the co-
ordinates. 

The calculation of the fine-structure energy of the atomic levels 
consists in averaging the perturbation operator Ysl over the unper-
turbed states of the electron shell. This averaging is done in two 
stages. First of all, we average over electron states of the atom with 
given absolute values L and S of the total orbital angular momentum 
and spin, but not over the directions of these. After this averaging 
Yst is still an operator, but it must be expressible in terms of the opera-
tors of quantities that characterise the atom as a whole, not the in-
dividual electrons. Such operators are S and L . T 

Let the operator of the spin-orbit interaction, thus averaged, be 

denoted by YLS. Since this is linear in S, it has the form 

t In order to clarify the meaning of this operation, it may be noted that averag-
ing in quantum mechanics has the general significance of taking the appropriate 
diagonal matrix element. A partial averaging consists in taking matrix elements 
that are diagonal with respect to only some of the quantum numbers describing 
the state of the system. For example, in this case the averaging of the operator 
(51.1) denotes the construction of a matrix with elements {nM'LM8 \ Vt\ \ HMLMS) 
with all possible MZi M'L and Ma, M'a and diagonal with respect to all the other 
quantum numbers (the assembly of which we denote by n). Correspondingly, the 
operators S and L are to be regarded as matrices (M'8 | S | M6) and {M'L | L | ML), 
whose elements are given by (15.11). A similar device of stepwise averaging will 
be needed in several subsequent treatments. 

Ysl = 2 a f l l a . s a ( 5 1 . 1 ) 

YLS = AL.S9 (51 .2) 
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where A is a constant characterising a given (unsplit) term, i.e. de-
pending on S and L but not on the total angular momentum J of 
the atom. 

To calculate the energy of the splitting we must solve the secular 
equation formed from the matrix elements of the operator (51.2). In 
this case, however, we already know the correct functions in the zeroth 
approximation, in which the matrix of VLS is diagonal. These are the 
wave functions of states with definite values of the total angular 
momentum / . The averaging with respect to such a state involves 
replacing the operator L . S by its eigenvalue, which, according to 
(17.3), is 

L . S = \{J(J+\)-L(L+\)-S{S+\)]. 

Since the values of L and S are the same for all the components of a 
multiplet, and we are interested only in their relative position, we can 
write the energy of the multiplet splitting in the form 

\AJ(J+l). (51.3) 

The intervals between adjacent components (with numbers / and /— 1) 
are consequently 

Δ Ε / , / . i - AJ. (51.4) 

This formula gives what is called Lande's interval rule. 
The constant A can be either positive or negative. For A > 0 the 

lowest component of the multiplet level is the one with the smallest 
possible 7, i.e. J = \L—S\; such multiplets are said to be normal. 
If A < 0, on the other hand, the lowest level of the multiplet is that 
with J — L+S; these multiplets are said to be inverted. 

For the averaged spin-spin interaction operator we should obtain, 
analogously to formula (51.2), an expression quadratic in S. The ex-
pressions S 2 and (S.L) are quadratic in S. The former has eigen-
values independent of / , and therefore does not give any splitting of 
the term. Hence it can be omitted, and we can write 

Yss = B(S.l)\ (51.5) 

where Β is a constant. The eigenvalues of this operator contain terms 
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independent of J, terms proportional to J(J+1), and finally a term 
proportional to J\J+1)2. The first of these do not give any splitting 
and hence are without interest; the second can be included in the 
expression (51.3), which simply means a change in the constant A. 
Finally, the last term gives an energy 

\BP{J+\f. (51.6) 

The scheme for the construction of the atomic levels given above 
is based on the supposition that the orbital angular momenta of the 
electrons combine to give the total orbital angular momentum L of 
the atom, and their spins to give the total spin S. As has already been 
mentioned, this supposition is legitimate only when the relativistic 
effects are small; more exactly, the intervals in the fine structure must 
be small compared with the differences between levels with different 
L and S. This approximation is called the Russell-Saunders case, and 
we speak also of LS coupling. 

In practice, however, this approximation has a limited range of 
applicability. The levels of the light atoms are arranged in accordance 
with the LS model, but as the atomic number increases the relativistic 
interactions in the atom become stronger, and the Russell-Saunders 
approximation becomes inapplicable. 

In the opposite limiting case the relativistic interaction is large 
compared with the electrostatic. In this case we cannot speak of the 
orbital angular momentum and spin separately, since they are not 
conserved. The individual electrons are characterised by their total 
angular momenta y, which combine to give the total angular momen-
tum J of the atom. This scheme of arrangement of the atomic levels 
is called jj coupling. In practice, this coupling is not found in the pure 
state, but various types of coupling intermediate between LS and jj 
are observed among the levels of very heavy atoms. 

A further splitting of atomic energy levels (beyond the fine structure) 
results from the interaction of the magnetic moments of the electron 
and the nucleus, and is called the hyperfine structure. Since the magne-
tic moments of the nuclei are small in comparison with those of the 
electrons, this interaction is comparatively very weak, so that the 
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intervals in the resultant splitting are very small in comparison with 
those in the fine structure. Hence the hyperfine structure must be 
considered separately for each component of the fine structure. 

Let the spin of the nucleus be denoted by / (in accordance with the 
notation usual in atomic spectroscopy). The total angular momentum 
of the atom (including the nucleus) is F = J + i , where J denotes as 
before the total angular momentum of the electron envelope. Each 
component of the hyperfine structure is described by a definite value 
of F. According to the general rules for the addition of angular mo-
menta, the quantum number F takes the values 

F = J+U J+i-U | / - ι | . (51.7) 

§52. The Mendeleev periodic system 

The elucidation of the nature of the periodic variation of properties, 
first observed by D. I. Mendeleev, in the series of elements when they 
are placed in order of increasing atomic number, requires an examina-
tion of the peculiarities in the successive completion of the electron 
shells of atoms. This was first carried out by N. Bohr (1922). 

When we pass from one atom to the next, the charge is increased 
by unity and one electron is added to the envelope. At first sight we 
might expect the binding energy of each of the successively added 
electrons to vary monotonically as the atomic number increases. The 
actual variation, however, is entirely different. 

In the normal state of the hydrogen atom there is only one electron, 
in the 1.$* state. In the atom of the next element, helium, another Is 
electron is added; the binding energy of each of the Is electrons in 
the helium atom is, however, considerably greater than in the hydro-
gen atom. This is a natural consequence of the difference between the 
field in which the electron moves in the hydrogen atom and the field 
encountered by an electron added to the H e + ion. At large distances 
these fields are approximately the same, but near the nucleus with 
charge Ζ = 2 the field of the H e + ion is stronger than that of the 
hydrogen nucleus with Ζ — 1. In the lithium atom (Z = 3), the third 
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electron enters the 2s state, since no more than two electrons can be 
in Is states at the same time. For a given Ζ the 2s level lies above 
the Is level; as the nuclear charge increases, both levels become 
lower. In the transition from Ζ = 2 to Ζ = 3, however, the former 
effect is predominant, and so the binding energy of the third electron 
in the lithium atom is considerably less than those of the electrons 
in the helium atom. Next, in the atoms from Be (Z = 4) to Ne (Z = 10), 
first one more 2s electron and then six 2p electrons are successively 
added. The binding energies of these electrons increase on the average, 
owing to the increasing nuclear charge. The next electron added, on 
going to the sodium atom (Z = 11), enters the 3s state, and the bind-
ing energy again diminishes markedly, since the effect of going to a 
higher shell predominates over that of the increase of the nuclear 
charge. 

This picture of the filling up of the electron envelope is character-
istic of the whole sequence of elements. All the electron states can be 
divided into successively occupied groups such that, as the states of 
each group are occupied in a series of elements, the binding energy 
increases on the average, but when the states of the next group begin 
to be occupied the binding energy decreases noticeably. Fig. 11 shows 

' 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

FIG. 11 
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those ionisation potentials of elements that are known from spectro-
scopic data; they give the binding energies of the electrons added as 
we pass from each element to the next. 

The different states are distributed as follows into successively oc-
cupied groups: 

Is 2 electrons 

2s, 2p 8 electrons 

3s, 3p 8 electrons 

4s, 3d, 4p 18 electrons 

5^, 4d, 5p 18 electrons 

6s, 4f, 5d, 6p 32 electrons 

(52.1) 

Is, 6d, 5f, ... 

The first group is occupied in Η and He; the occupation of the second 
and third groups corresponds to the first two (short) periods of the 
periodic system, containing 8 elements each. Next follow two long 
periods of 18 elements each, and a long period containing the rare-
earth elements and 32 elements in all. The final group of states is not 
completely occupied in the natural (and artificial transuranic) ele-
ments. 

To understand the variation of the properties of the elements as the 
states of each group are occupied, the following property of d and / 
states, which distinguishes them from s and ρ states, is important. 
The curves of the effective potential energy of the centrally symmetric 
field (composed of the electric field and the centrifugal field) for and 
electron in a heavy atom have a rapid and almost vertical drop to a 
deep minimum near the origin; they then begin to rise, and approach 
zero asymptotically. For s and ρ states, the rising parts of these 
curves are very close together. This means that the electron is at 
approximately the same distance from the nucleus in these states. The 
curves for the d states, and particularly for the / states, on the other 
hand, pass considerably further to the left; the "classically accessible" 
region which they delimit ends considerably closer in than that for 
the s and ρ states with the same total electron energy. In other words, 
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an electron in the d and / states is mainly much closer to the nucleus 
than in the s and ρ states. 

Many properties of atoms (including the chemical properties of 
elements; see §58) depend principally on the outer regions of the elec-
tron envelopes. The above characteristic of the d and / states is very 
important in this connection. Thus, for instance, when the 4f states 
are being filled (in the rare-earth elements; see below), the added 
electrons are located considerably closer to the nucleus than those in 
the states previously occupied. As a result, these electrons have practic-
ally no effect on the chemical properties, and all the rare-earth ele-
ments are chemically very similar. 

The elements containing complete d and / shells (or not containing 
these shells at all) are called elements of the principal groups; those in 
which the filling up of these states is actually in progress are called 
elements of the intermediate groups. These groups of elements are 
conveniently considered separately. 

Let us begin with the elements of the principal groups. Hydrogen 
and helium have the following normal states: 

i H : l ^ 2 5 i / 2 2 H e : ls21S0 

(the number with the chemical symbol always signifies the atomic 
number). The electron configurations of the remaining elements of the 
principal groups are shown in Table 1. 

In each atom, the shells shown on the right of the table in the same 
line and above are completely filled. The electron configuration in the 
shells that are being filled is shown at the top, while the principal 
quantum number of the electrons in these states is shown by the 
figure on the left of the table in the same line. The normal states of the 
whole atom are shown at the bottom. Thus, the aluminium atom has 
the electron configuration Is 2 2^2 2p6 3s2 3p 2 P 1 / 2 . 

The atoms of the inert gases (He, Ne, Ar, Kr, Xe, Rn) occupy a 
special position in the table: the filling up of one of the groups of 
states listed in (52.1) is completed in each of them. Their electron 
configurations have unusual stability (their ionisation potentials are 

13 
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Electron configurations of the atoms of elements in the principal groups 

s S2 s2p s2p2 φ 3 s2p* s2/>5 s2p6 

n = 2 3Li 4 Be eC 7 N 
8 o i 0 Ne 

3 nNa i 2 Mg 13AI i 4Si 15P 1 6 $ 1 7C1 i 8 Ar 2s2 2p* 
4 19K 2 0 Ca 3s2 3p* 
4 29C11 3 0 Z n 3 1 G a 3 2 ^ e 33AS 3 4 Se 3 5 Br 3 6 ^ r 3d10 

5 3 7 R b 3 8 $ Γ 4s2 4p* 
5 4 7 A g 4 8 C d 4 9 I n 5 0 S n 5 iSb 6 4 X e 4dio 

6 55CS s 6Ba 5s2 5p6 

6 79A11 
8 0 H g siTl 8 2 Pb 8 3 β ί 8 1 P o ssAt 8 6 R n 4 / 1 4 5dio 

7 ssRa 6s2 6p6 

2*^l/2 ^ 0 3 D r 0 4 * $ 3 / 2 
3i>2 

1 

2 ·^3 / 2 J 

the greatest in their respective series). This causes the chemical inert-
ness of these elements. 

We see that the occupation of different states occurs very regularly 
in the series of elements of the principal groups: first the s states and 
then the ρ states are occupied for each principal quantum number n. 
The electron configurations of the ions of these elements are also reg-
ular (until electrons from the d and / shells are removed in the ion-
isation): each ion has the configuration corresponding to the preced-
ing atom. Thus, the M g + ion has the configuration of the sodium 
atom, and the Mg + + ion that of neon. 

Let us now turn to the elements of the intermediate groups. The 
filling up of the 3d, 4d, and 5d shells takes place in groups of elements 
called respectively the iron group, the palladium group and the platinum 
group. Table 2 gives those electron configurations and terms of the 
atoms in these groups that are known from experimental spectroscopic 
data. As is seen from this table, the d shells are filled up with consider-
ably less regularity than the s and ρ shells in the atoms of elements 
of the principal groups. Here a characteristic feature is the "competi-

TABLE 1 
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Iron group 

AT 

envelope 
+ 

2iSc 
2 2 Ti 2 3 ^ l 2 4 ^ Γ 

I 
2 5 M n 2 7 C o 

2 8 N i 

AT 

envelope 
+ 3d 4s2 

2 - ^ 3 / 2 

3d2 4s2 3cf34i2 

4 ^ 3 , 2 

3rf54y 

^ 3 

3rf54.s2 

^ 5 / 2 

3d* 4s2 3rf74.y2 
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Electron configurations of the atoms of elements in the iron, palladium and 
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tion" between the s and d states. It is seen in the fact that, instead of 
a regular sequence of configurations of the type rfV with increas-
ing p, configurations of the type dp+1s or dp+2 are often found. Thus, 
in the iron group, the chromium atom has the configuration 3d5 4s, 
and not 3rf4 4s2; after nickel with 8 d electrons, there follows at once 
the copper atom with a completely filled d shell (and hence we place 
this element in the principal groups). This lack of regularity is observed 
in the terms of ions also: the electron configurations of the ions do 
not usually agree with those of the preceding atoms. For instance, the 
V+ ion has the configuration 3d* (and not 3d2 4s2 like titanium); the 
F e + ion has 3d6 4s (instead of 3d5 4s2 as in manganese). We may re-
mark that all ions found naturally in crystals and solutions contain 
only d (not s or p) electrons in their incomplete shells. Thus iron is 
found in crystals or solutions only as the ions F e + + and Fe++ + , whose 
configurations are 3d6 and 3d5 respectively. 

A similar situation occurs in the filling up of the 4/shell; this takes 
place in the series of elements known as the rare earths (Table 3). The 
filling up of the 4 / shell also occurs in a slightly irregular manner 
characterised by the "competition" between 4/, 5d and 6s states. 

The last group of intermediate elements begins with actinium. In 
this group the 6d and 5 / shells are filled, similarly to what happens in 
the group of rare-earth elements. 

§53. X-ray terms 

The binding energy of the inner electrons in the atom is so large 
that, if such an electron makes a transition into an outer unfilled shell 
(or is removed from the atom), the excited atom (or ion) is mechani-
cally unstable with respect to ionisation, which is accompanied by the 
reconstruction of the electron envelope and the formation of a stable 
ion. However, because of the comparatively weak interaction between 
the electrons in the atom, the probability of such a transition is com-
paratively small, so that the lifetime r of the excited state is long. Hence 
the width h\x of the level (see §38) is so small that it is reasonable to 
regard the energies of an atom with an excited inner electron as discrete 
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energy levels of "quasi-stationary" states of the atom. These levels are 
called X-ray terms? 

The X-ray terms are primarily classified according to the shell from 
which the electron is removed, or in which, as we say, a "hole" is 
formed. Where the electron goes has almost no effect on the energy 
of the atom, and hence is unimportant. 

The total angular momentum of the set of electrons occupying any 
shell is zero. When one electron has been removed, the shell acquires 
some angular momentum j . For the (w, /) shell, the angular momentum 
j can take the values l ± \ . Thus we obtain levels which might be de-
noted by \sm, 2y 1 / 2, 2plf2, 2pzf2, . . . , where the value of j is added 
as a suffix to the letter giving the position of the "hole". It is usual, 
however, to employ special symbols as follows: 

15*1/2 2̂ 1/2 2/?i/2 2/?3/2 3Sy2 3/?i/2 3/?3/2 3ί&/2 3ds/2 ... 
Κ Li LU Lin M\ Mu Mm M\y M\ ... 

Levels with the same η (denoted by the same capital letter) lie close 
together and at a distance from levels with a different n. The reason 
for this is that, owing to the relative nearness of the inner electrons 
to the nucleus, they are in the almost unscreened Coulomb field of the 
nucleus, and hence their states are "hydrogen-like"; the energy is 
approximately that of a single electron in the field of a nucleus with 
charge Ze, and so depends only on the principal quantum number 
η (§31). If relativistic effects are taken into account, terms with differ-
ent j are separated, such as, for example, Lj and from L m , and 
Mj and Mu from Mm and M I V . These pairs of levels are said to be 
relativistic doublets. The separation of terms with different / and the 
same j (for instance Lj and Ljj, Μτ and Mu) is due to the deviation 
of the field in which the inner electrons move from the Coulomb field 
of the nucleus, i.e. to the taking into account of the interaction of the 
electron with other electrons. These are said to be screening doublets. 

The width of an X-ray term is determined by the total probability 
of all possible processes of rearrangement of the electron envelope 

t The name is due to the fact that transitions between these levels cause the 
emission of X-rays by the atom. 
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of the atom so as to fill the "hole" in question. In the heavy atoms, 
transitions of the hole from a given shell to a higher one (i.e. electron 
transitions in the opposite direction) are the most important, and are 
accompanied by the emission of X-ray quanta. The probability of 
these "radiative" transitions, and therefore the corresponding part of 
the level width, increase very rapidly with the atomic number. 

For lighter atoms, an important or even predominant part in de-
termining the level width is played by radiationless transitions in 
which the energy liberated when a hole is filled by an electron from 
above goes to remove another inner electron from the atom (called 
the Auger effect). As a result of this process the atom is in a state with 
two holes. 

§54. An atom in an electric field 

In classical theory, the electrical properties of a system of particles 
are described by its electric multipole moments of various orders (see 
Mechanics and Electrodynamics, §§62, 63). In the quantum theory, the 
definitions of these quantities are the same in form, but they must now 
be regarded as operators. 

The first multipole moment is the dipole moment, defined as the 
vector 

a=Eer. (54.1) 

For an atom (whose nucleus is assumed to be fixed at the origin), the 
summation is over all the electrons; the suffix which numbers the 
electrons is omitted for brevity. The mean value of the dipole moment 
in a stationary state of the atom is obtained by averaging the operator 
(54.1) over the wave function of the state, i.e. by taking the correspond-
ing diagonal matrix element. The matrix of this operator, like that of 
any polar vector (see §19), has non-zero elements only for transitions 
between states of different parity. The diagonal elements are therefore 
always zero. In other words, the mean values of the dipole moment of 
an atom in stationary states are zero.1" 

t Here it is assumed that the energy levels of the atom are degenerate only with 
respect to the directions of its total angular momentum. All states which differ 
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The quadrupole moment of a system is defined as the symmetrical 
tensor 

Qik^YeQxiXu-d^l (54.2) 

the sum of whose diagonal terms is zero. 
It must be noted first of all that the mean value of the quadrupole 

moment is zero in any state having total angular momentum / == 0 
or -|. This can be proved by the method described in §18 for finding 
the selection rules for the matrix elements of vectors and tensors. Using 
this method, we formally assign to the tensor (54.2) an "angular mo-
mentum" L = 2. The matrix element is non-zero if the addition of 
this to the angular momenta Λ and J2 of the initial and final states 
can give the result zero. This cannot occur with the three values 2 ,0 ,0 
or 2, \, and the diagonal matrix elements therefore vanish for J\ = 
= / a . = 0 o r | . 

For a state of the atom having a given total angular momentum 
/ , the mean values of the quadrupole moment depend on the angular 
momentum component Mj. The dependence can be found as follows. 

The averaging of the operator (54.2) with respect to the state of the 
atom is conveniently carried out in two stages (cf. §51). We first aver-
age over states for which the value of / is fixed, but not that of Mj. 
The operator thus averaged, denoted by <2ik-> must be expressible in 
terms of operators of quantities describing the state of the atom as a 
whole. The only such vector is the "vector" J . Thus Qik must have the 

(54.3) 

where the expression in parentheses is constructed so as to be symmet-
rical in the suflixes i and k and to vanish on summation over i = k; 

only in the values of the projection of the total angular momentum have the same 
parity, and therefore any superposition of them has this parity also. The hydrogen 
atom forms an exceptional case here, since its levels have an additional "acciden-
tal" degeneracy. The mutually degenerate states with different values of the orbital 
angular momentum / may have different parities. From their wave functions one 
can obtain superpositions having no definite parity; the corresponding diagonal 
matrix element of the dipole moment need not be zero. 
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and this gives the required dependence. For Mj = / (when the an-
gular momentum is "entirely" in the z-direction), we have QZ2 = Q\ 
this quantity is usually called simply the quadrupole moment. 

Let us consider an atom in a uniform electric field E. In such an 
atom, the electrons are in an axially symmetric field (the field of the 
nucleus together with the uniform field). The total angular momentum 
J of the atom is therefore no longer conserved, but its projection on 
the direction of the axis of symmetry (taken as the z-axis) is conserved. 

By distinguishing a particular direction in space, the external field 
removes the degeneracy of the levels with respect to the directions of 
the angular momentum: the states having different values of J2 = Mj, 
whose energies are equal in the free atom, have different energies in 
the electric field (the Stark effect). The splitting of the levels is, how-
ever, incomplete; the energies of the states which differ only in the sign 
of Mj remain the same. This is a direct consequence of the symmetry 
under time reversal (§23). Since the directions of all velocities are 
reversed by this operation, so is the sign of the angular-momentum 
projection, the energy of the system remaining unchanged; the field 
Ε is unaltered (see Mechanics and Electrodynamics, §44). 

the significance of the coefficient Q will be explained later. The oper-
ators Jt must here be understood as the familiar (§15) matrices with 
respect to states having different values of Mj. 

Since the three components of the angular momentum vector cannot 
simultaneously have definite values, the same is true of the compon-
ents of the tensor (54.3). For the component QZ2, we have 

The averaging of this operator with respect to a state having fixed 
values of J and Mj now simply means replacing the operators by 
their eigenvalues. Thus we find 

(54.4) 
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Thus the energy levels of an atom in an electric field remain doubly 
degenerate, except for the levels having Mj = 0. But if the total 
angular momentum / is half-integral, the value Mj = 0 cannot oc-
cur, and all the levels are then doubly degenerate. This is a particular 
case of a more general rule: it can be shown from the requirements 
of symmetry under time reversal that, for a system with half-integral 
/ , the double degeneracy of the levels is retained in any electric field 
(not necessarily uniform). This is Kramers' theorem? 

If the electric field is so weak that the additional energy due to it is 
small compared with the distances between neighbouring unperturbed 
energy levels of the atom, then perturbation theory can be used to 
calculate the displacement of the levels. In a uniform field, the per-
turbation operator is the potential energy of the atom in the field, 
expressed in terms of its dipole moment: 

In the first approximation, the displacement of the energy levels is 
determined by the corresponding diagonal matrix elements of the per-
turbation operator. These elements are zero, however, because the 
mean values of the dipole moment are zero. The splitting of the levels 
in the electric field therefore occurs only in the second approximation 
of perturbation theory, and accordingly is proportional to the square 
of thefield.t 

Being a quadratic function of the field, the displacement ΔΕη of the 
level En must be expressed by a formula of the type 

where the coefficients form a symmetrical tensor of rank two; 

t It must be emphasised, however, that in an arbitrary electric field the states 
of the atom can no longer be described by the values of the angular-momentum 
projection, since in an inhomogeneous field the components of the angular momen-
tum as well as its absolute value are not conserved. 

J The hydrogen atom forms an exception; for its stationary states, the mean 
value of the dipole moment need not be zero. The splitting of the energy levels 
of the hydrogen atom is consequently linear in the field. 

F = - E . d = - | E | i t . (54.5) 

(54.6) 
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taking the z-axis in the direction of the field, we have 

^En=-\^\Έ\\ (54.7) 

The coefficients in these formulae have a further significance: they 
represent the polarisability of the atom in the external electric field. 
This follows from the general formula 

(dH/dX)nn = dEn/dX. (54.8) 

The expression on the left is the diagonal matrix element of the ope-
rator 81ϊ/3λ, where A is the Hamiltonian of the system, a function 
of some parameter λ; the eigenvalues En of the Hamiltonian are also 
functions of λ. If the parameter λ in (54.8) is taken to be the magnitude 
IΕI of the field, and if we put 

H = Ao+? = Ho-\E\d2, 

then, with (54.7), 
i = «S } |E | . (54.9) 

The polarisability of the atom is the proportionality coefficient be-
tween its dipole moment in a field and the magnitude of the field. 

To prove formula (54.8), we begin from the equation 

(Η-Εη)ψη = 0 

which determines the eigenvalues of the operator H. Differentiating 
this with respect to λ and then multiplying on the left by we 
obtain 

On integration with respect to q, the left-hand side gives zero, since 
the operator His Hermitian and therefore (see (3.10)) 

and (Η*—Εη)ψΙ = 0. The right-hand side gives the required formula. 
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§55. An atom in a magnetic field 

where the summation is taken over all the electrons (the electron 
charge being written as e = — | e |), U is the energy of interaction of the 
electrons with the nucleus and with another, and S = £ s a is the 
operator of the total (electron) spin of the atom. 

We can take the vector potential of the uniform field in the form 

A = y H X r (55.2) 

(see Mechanics and Electrodynamics, §46). It is easy to see that, with 
this choice, the operator ρ = — ih ν commutes with A, since for any 
function ^(r) 

(pA — Ap) = — ihv (Ay))+ihA. = — ihip div A, 

i.e. 
pA—Ap — —ih div A. 

For the vector (55.2), div A = —yH.curlr = 0. Using this result in 
expanding the bracket in (55.1), we can rewrite the Hamiltonian in 
the form 

(55.1) 

where H0 is the Hamiltonian of the atom in the absence of the field. 
Substituting A from (55.2), we obtain 

The vector product r a Xp f l , however, is the operator of the electron 
orbital angular momentum, and the summation over all the electrons 

Let us consider an atom in a uniform magnetic field H. Accord-
ing to (43.4), its Hamiltonian is 
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(55.3) 

where μΒ is the Bohr magneton. 
Like an electric field, the external magnetic field splits the atomic 

levels, removing the degeneracy with respect to the directions of the 
total angular momentum (the Zeeman effect). Let us determine the 
amount of this splitting for atomic levels having definite values of the 
quantum numbers / , L and S (i.e. assuming the case of LS coupling; 
see §51). 

We shall assume that the magnetic field is so weak that μΒ\ Η | is 
small compared with the distances between the energy levels of the 
atom, including the fine-structure intervals. Then the second and third 
terms in (55.3) can be regarded as a perturbation, the unperturbed 
levels being the separate components of the multiplets. In the first 
approximation we can neglect the third term, which is quadratic with 
respect to the field, in comparison with the second term, which is 
linear. 

In the first approximation of perturbation theory, the energy AE of 
the splitting is determined by the mean values of the perturbation in 
(unperturbed) states which have different values of the projection of 
the total angular momentum on the direction of the field. Taking this 
direction as the z-axis, we have 

AE = μΒ\Η\(Σχ+2!5,) = μΒ|H| (Λ+3 , ) . (55.4) 

The mean value ~J2 is just the given eigenvalue of Jz = Mj. The mean 
value Sz can be found as follows, using stepwise averaging (cf. §51). 

We first average the operator S over a state of the atom with fixed 

values of S, L and J, but not of Mj. The operator S thus averaged 

must be "parallel" to J, the only conserved "vector" characterising 

a free atom. We can therefore write 

S = constant X J. 

gives the operator KL of the total orbital angular momentum of the 
atom. Thus 
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In this form, however, the equation is purely conventional, since the 
three components of the vector J cannot simultaneously have definite 
values. Its z-component can be taken literally: 

Sz = constant Χ Λ = constant XMj, 

as can the equation 

S . J = constant X J 2 = constant X / ( / + l ) , 

which is obtained on multiplying both sides by J. Taking the conserved 

vector J under the averaging sign gives S . J = S . J. The mean value 

S . J is the same as the eigenvalue 

S . J = l [ / ( / + l ) - L ( L + l ) + S ( S + l ) ] f 

to which it is equal in a state having definite values of L 2 , S 2 , and 
J 2 (from formula (17.3), in which we must take Li, L 2 , and L as S, L, 
and J respectively). Determining the constant from the second equa-
tion and substituting in the first equation, we therefore have 

Sz = Mj3.SjP. (55.5) 

Collecting the above expressions and substituting in (55.4), we find 
the following final expression for the energy of the splitting: 

^E = μBgMJ\KU (55.6) 
where 

(55.7) 

is what is called the Lande factor or gyromagnetic factor. If there is 
no spin (S = 0, and so J = L), g = 1; if L = 0, and so / = S, then 
S = 2. 

Formula (55.6) gives different values of the energy for all the 
2 / + 1 values Mj = J, /— 1, . . . , —/. Thus the magnetic field com-
pletely removes the degeneracy of the levels with respect to directions 
of the angular momentum, unlike the electric field, which leaves the 
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levels with Mj =±\Mj\ unsplit.1" However, the linear splitting des-
cribed by (55.6) does not occur if g = 0; this can refer even to states 
for which / ^ 0, such as 4£>1 / 2. 

We have seen in §54 that there is a relation between the displace-
ment of an energy level of an atom in an electric field and its mean 
dipole moment. A similar relation exists in the magnetic case. The 
potential energy of a system of charges in a uniform magnetic field is 
given, in classical theory, by — μ.Η, where μ is the magnetic moment 
of the system. In the quantum theory, it is replaced by the correspond-
ing operator, so that the Hamiltonian of the system is 

Ά = Αο-μ.Η = 6ο-βζ\Έί\. 

Now, applying (54.8), with the field |H| as the parameter λ, we find 
that the mean value of the magnetic moment is 

/Ζ* = - 8 Δ Ε / 8 | Η | , (55.8) 

where AE is the displacement of the energy level for the given state 
of the atom. Substituting (55.6), we see that an atom in a state with a 
definite value Μ3 of the projection of the total angular momentum 
on some direction ζ has a mean magnetic moment in that direction 

μ ζ = -μΒ£ΜΙ. (55.9) 

If the atom has neither spin nor orbital angular momentum (S = 
= L = 0), the second term in (55.3) gives no displacement of the level 
in either the first or higher approximations (since all the matrix ele-
ments of L and S vanish). The entire effect in this case therefore arises 
from the third term in (55.3), and in the first approximation of per-
turbation theory the displacement of the level is equal to the mean 
value 

t The arguments applied to the electric-field case in this respect in §54 are not 
valid for a magnetic field. The reason is that the operation of time reversal has 
to be accompanied by the change Η - Η (see Mechanics and Electrodynamics, 
§44). The states obtained from each other by this operation therefore belong to 
atoms in different fields, not in the same field. 

(55.10) 
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Putting ( H X r J 2 = HV* sin2 0 e, where θα is the angle between Η and 
r a , we average with respect to the directions of r a . A state of an atom 
with L = S = 0 is spherically symmetrical; the averaging with re-
spect to directions is therefore independent of that with respect to 
distances ra, and gives sin2 θα = 1—cos2 θα = Thus 

(55.12) 

It is negative, i.e. the atom is diamagnetic. 

(55.11) 

The magnetic moment of the atom calculated from (55.8) is then 
proportional to the field (an atom with L = S = 0 has, of course, no 
magnetic moment in the absence of a field). Writing it in the form 
# |H| , we can regard the coefficient χ as the magnetic susceptibility 
of the atom, given by Langevin's formula 
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THE D I A T O M I C M O L E C U L E 

§56. Electron terms in the diatomic molecule 

In the theory of molecules an important part is played by the fact 
that the masses of atomic nuclei are very large compared with those 
of the electrons. Because of this difference in mass, the rates of motion 
of the nuclei in the molecule are small in comparison with the velocities 
of the electrons. This makes it possible to regard the motion of the 
electrons as being about fixed nuclei placed at given distances from 
one another. On determining the energy levels Un for such a system, 
we find what are called the electron terms for the molecule. Unlike 
those for atoms, where the energy levels were certain numbers, the 
electron terms here are not numbers but functions of parameters, the 
distances between the nuclei in the molecule. The energy Un includes 
also the electrostatic energy of the mutual interaction of the nuclei, so 
that Un is the total energy of the molecule for a given arrangement of 
the fixed nuclei. 

The most complete theoretical investigation is possible for the sim-
plest type, the diatomic molecules, which will be discussed in this 
chapter. The electron terms of a diatomic molecule are functions of 
only one parameter, the distance r between the nuclei. 

One of the chief principles in the classification of the atomic terms 
was the classification according to the values of the total orbital 
angular momentum L. In molecules, however, there is no law of 
conservation of the total orbital angular momentum of the electrons, 
since the electric field of several nuclei is not centrally symmetric. 

14 197 
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In diatomic molecules, however, the field has axial symmetry about 
an axis passing through the two nuclei. Hence the projection of the 
orbital angular momentum on this axis is here conserved, and we can 
classify the electron terms of the molecules according to the values 
of this projection. The absolute value of the projected orbital angular 
momentum along the axis of the molecule is customarily denoted by 
the letter A\ it takes the values 0, 1,2, The terms with different 
values of Λ are denoted by the capital Greek letters corresponding 
to the Latin letters for the atomic terms with various L. Thus, for 
Λ — 0, 1, 2 we speak of 27, Π and Δ terms respectively. 

Next, each electron state of the molecule is characterised by the 
total spin S of all the electrons in the molecule. If all relativistic inter-
actions (i.e. the fine structure of the term; cf. §51) are neglected, an 
electron term with spin S has degeneracy of degree 2S+1 with respect 
to the directions of the total spin. The number 2.S+1 is, as in atoms, 
called the multiplicity of the term, and is written as an index before 
the letter for the term; thus 377 denotes a term with Λ = 1, S = 1. 

Besides rotations through any angle about the axis, the symmetry 
of the molecule allows also a reflection in any plane passing through 
the axis. If we effect such a reflection, the energy of the molecule is 
unchanged. The state obtained from the reflection is, however, not 
completely identical with the initial state. For, on reflection in a plane 
passing through the axis of the molecule, the sign of the angular 
momentum about this axis is changed.1* Thus we conclude that all 
electron terms with non-zero values of Λ are doubly degenerate: to 
each value of the energy, there correspond two states which differ in 
the direction of the projection of the orbital angular momentum on 
the axis of the molecule. In the case where Λ = 0 the state of the 
molecule is not changed at all on reflection, so that the Σ terms are 
not degenerate. The wave function of a Σ term can only be multiplied 
by a constant as a result of the reflection. Since a double reflection 
in the same plane is an identity transformation, this constant is ± 1. 

t Let the reflection be in the jtz-plane, the z-axis being the axis of the molecule. 
Under this transformation, only the ^-components of the vectors r and ρ change 
sign, and (rxp) z = xpy-ypx therefore changes sign also. 
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Thus we must distinguish Σ terms whose wave functions are un-
altered on reflection and those whose wave functions change sign. 
The former are denoted by 27+, and the latter by Σ~. 

If the molecule consists of two similar atoms, a new symmetry 
appears, and with it an additional characteristic of the electron terms. 
A diatomic molecule with identical nuclei has a centre of symmetry 
at the point bisecting the line joining the nuclei. (We shall take this 
point as the origin.) Hence the Hamiltonian is invariant with respect 
to a simultaneous change of sign of the coordinates of all the electrons 
in the molecule (the coordinates of the nuclei remaining unchanged). 
Since the operator of this transformation also commutes with the 
orbital angular momentum operator, we have the possibility of clas-
sifying terms with a given value of Λ according to their parity: the 
wave functions of even (g) states are unchanged when the coordinates 
of the electrons change sign, while those of odd (u) states change sign. 
The suffixes w, g indicating the parity are customarily written with the 
letter for the term: Πφ IIg, and so on. 

There is an empirical rule, according to which the normal electron 
state in the great majority of chemically stable diatomic molecules is 
completely symmetrical: the electron wave function is invariant with 
respect to all symmetry transformations in the molecule. As we shall 
show in §58, the total spin S is zero too, in the great majority of cases, 
in the normal state. In other words, the ground term of the molecule 
is 1Σ+9 and it is 1Σ+

8 if the molecule consists of two similar atoms. 
Exceptions to these rules are formed by the molecules 0 2 (whose 
normal term is 3Σ~) and NO (normal term 2i7). 

§57. The intersection of electron terms 

The electron terms in a diatomic molecule as functions of the 
distance r between the nuclei can be represented graphically by plotting 
the energy as a function of r. It is of considerable interest to examine 
the intersection of the curves representing the different terms. 

Let Ui(r), U2(r) be two different electron terms. If they intersect at 
some point, then the functions U\ and U2 will have neighbouring 

14* 
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values near this point. To decide whether such an intersection can 
occur, it is convenient to put the problem as follows. Let us consider 
a point r0 where the functions Ux(r), U2{r) have very close but not 
equal values (which we denote by Εχ, E2), and examine whether or not 
we can make ϋχ and U2 equal by displacing the point a short distance 
br. The energies Εχ and E2 are eigenvalues of the Hamiltonian J&0 of 
the system of electrons in the field of the nuclei, which are at a distance 
r0 from each other. If we add to the distance r0 an increment dr, the 
Hamiltonian becomes ίϊο+Ϋ, where Ϋ = Sr*dHo/dr is a small cor-
rection; the values of the functions Ux, U2 at the point r0+br can be 
regarded as eigenvalues of the new Hamiltonian. This point of view 
enables us to determine the values of the terms Ux(r), U2{r) at the 
point r0+br by means of perturbation theory, Ϋ being regarded as a 
perturbation to the operator i / 0 . 

The ordinary method of perturbation theory is here inapplicable, 
however, since the eigenvalues Εχ, E2 of the energy in the unperturbed 
problem are very close to each other, and their difference is in general 
small compared with the magnitude of the perturbation; the condition 
(32.9) is not fulfilled. Since, in the limit as the difference Ε2—Εχ tends 
to zero, we have the case of degenerate eigenvalues, it is natural to 
attempt to apply to the case of close eigenvalues a method similar to 
that developed in §33. 

Let ψχ, ψ2 be the eigenfunctions of the unperturbed operator Ho 
which correspond to the energies Εχ, E2. As an initial zero-order 
approximation we take, instead of ψχ and ψ2 themselves, linear com-
binations of them of the form 

ψ = cxyx+c2y2. (57.1) 

Substituting this expression in the perturbed equation 

(Η0+Ϋ)ψ =Εψ, (57.2) 

we obtain 

Cx(Ex + Y-E)yx+c2{E2+Y-E)y2 = 0. 

Multiplying this equation on the left by ψ* and ψ* in turn, and 
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integrating, we have two algebraic equations: 

Ci(E1+V11-E)+c2V12 = 0 , 

CiV21+c2(E2+V22-E) = 0, 

where Vik = J ip*Yipkaq. Since the operator Ϋ is Hermitian, the 
quantities Vn and V22 are real, while V12 = Κ21· The compatibility 
condition for these equations is 

Εχ+V^-E V12 = 

whence 

(57.3) 

This formula gives the required eigenvalues of the energy in the first 
approximation. 

If the energy values of the two terms become equal at the point 
r0+dr (i.e. the terms intersect), this means that the two values of Ε 
given by formula (57.3) are the same. For this to happen, the expres-
sion under the radical in (57.3) must vanish. Since it is the sum of two 
squares, we obtain, as the condition for there to be points of intersec-
tion of the terms, the equations 

Ei-E2+ Vn- V22 = 0, V12 = 0. (57.4) 

However, we have at our disposal only one arbitrary parameter giving 
the perturbation namely the magnitude br of the displacement. 
Hence the two equations (57.4) cannot in general be simultaneously 
satisfied (we assume ψχ and ψ2 to be chosen real and therefore V12 real). 

It may happen, however, that the matrix element V12 vanishes iden-
tically; there then remains only one equation (57.4), which can be 
satisfied by a suitable choice of dr. This happens in all cases where 
the two terms considered are of different symmetry. By symmetry we 
here understand all possible forms of symmetry: with respect to ro-
tations about an axis, reflections in planes, inversion, and also with 
respect to interchanges of electrons. In the diatomic molecule this 
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means that we may be dealing with terms of different A, different 
parity or multiplicity, or (for Σ terms) Σ+ and Σ" terms. 

This result arises because the operator Ϋ (like the Hamiltonian 
itself) commutes with all the symmetry operators for the molecule: 
the operator of the angular momentum about an axis, the reflection 
and inversion operators, and the operators of interchanges of elec-
trons. It has been shown in §§18 and 19 that, for a scalar quantity 
whose operator commutes with the angular momentum and inversion 
operators, only the matrix elements for transitions between states of 
the same angular momentum and parity are non-zero. This proof 
remains valid, in essentially the same form, for the general case of an 
arbitrary symmetry operator. 

Thus we reach the result that, in a diatomic molecule, only terms 
of different symmetry can intersect, while the intersection of terms of 
like symmetry is impossible (E. Wigner and J. von Neumann 1929). 

\ U(r) 

-*-r 
FIG. 12 

If, as a result of some approximate calculation, we obtain two inter-
secting terms of the same symmetry, they are found to move apart 
on calculating the next approximation, as shown by the continuous 
lines in Fig. 12. 

§58. Valency 

The property of atoms of combining with one another to form 
molecules is described by means of the concept of valency. To each 
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atom we ascribe a definite valency, and when atoms combine their 
valencies must be mutually satisfied, i.e. to each valency bond of an 
atom there must correspond a valency bond of another atom. For 
example, in the methane molecule CH 4 , the four valency bonds of the 
quadrivalent carbon atom are satisfied by the four univalent hydrogen 
atoms. In going on to give a physical interpretation of valency, we 
shall begin with the simplest example, the combination of two hydro-
gen atoms to form the molecule H 2 . 

Let us consider two hydrogen atoms in the ground state (2S). When 
they approach, the resulting system may be in the molecular state 
χ27+ or 327+. The singlet term corresponds to an antisymmetrical spin 
wave function, and the triplet term to a symmetrical function. The 
coordinate wave function, on the other hand, is symmetrical for the 
ΧΣ term and antisymmetrical for the 327 term. It is evident that the 
ground term of the H 2 molecule can only be the ΧΣ term. For an anti-
symmetrical wave function φ(γχ, r 2 ) (where τχ and r 2 are the radius 
vectors of the two electrons) always has nodes (since it vanishes for 
ri = r 2 ) , and hence cannot belong to the lowest state of the system. 

A numerical calculation shows that the electron term ΧΣ in fact has 
a deep minimum corresponding to the formation of a stable H 2 mole-
cule. In the 327 state, the energy U(r) decreases monotonically as the 
distance between the nuclei increases, corresponding to the mutual 
repulsion of the two hydrogen atoms1" (Fig. 13). 

Thus, in the ground state, the total spin of the hydrogen molecule is 
zero, S = 0. It is found that the molecules of practically all chemically 
stable compounds of elements of the principal groups have this 
property. Among inorganic molecules, exceptions are formed by the 
diatomic molecules 0 2 (ground state 327) and NO (ground state 2/7) 
and the triatomic molecules N 0 2 , C10 2 (total spin S = y). Elements 
of the intermediate groups have special properties which we shall 

t Here we ignore the van der Waals attraction forces between the atoms (see 
§61). The existence of these forces causes a minimum (at a greater distance) on the 
U(r) curve for the ΆΣ term also. This minimum, however, is very shallow in com-
parison with that on the ΧΣ curve, and would not be perceptible on the scale of 
Fig. 13. 
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FIG. 1 3 

discuss below, after studying the valency properties of the elements of 
the principal groups. 

The property of atoms of combining with one another is thus related 
to their spin (W. Heitler and H. London 1927). The combination 
occurs in such a way that the spins of the atoms compensate one 
another. As a quantitative characteristic of the mutual combining 
powers of atoms, it is convenient to use an integer, twice the spin of 
the atom. This is equal to the chemical valency of the atom. Here it 
must be borne in mind that the same atom may have different valencies 
according to the state it is in. 

Let us examine, from this point of view, the elements of the principal 
groups in the periodic system. The elements of the first group (the first 
column in Table 1 (§52), the group of alkali metals) have a spin S = \ 
in the normal state, and accordingly their valencies are unity. An 
excited state with a higher spin can be attained only by exciting an 
electron from a completed shell. Accordingly, these states are so 
high that the excited atom cannot form a stable molecule. 

The atoms of elements in the second group (the second column in 
Table 1, the group of alkaline-earth metals) have a spin S = 0 in the 
normal state. Hence these atoms cannot enter into chemical compounds 
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in the normal state. However, comparatively close to the ground state 
there is an excited state having a configuration sp instead of s2 in the 
incomplete shell, and a total spin S = 1. The valency of an atom in 
this state is 2, and this is the principal valency of the elements in the 
second group. 

The elements of the third group have an electron configuration s2p 
in the normal state, with a spin S = \ . However, by exciting an electron 
from the completed .y-shell, an excited state is obtained having a con-
figuration sp2 and a spin S = 3/2, and this state lies close to the normal 
one. Accordingly, the elements of this group are both univalent and 
tervalent. The first two elements in the group (boron, aluminium) 
behave only as tervalent elements. The tendency to exhibit a valency 
1 increases with the atomic number, and thallium behaves equally as 
a univalent and as a tervalent element (for example, in the compounds 
T1C1 and T1C13). This is due to the fact that, in the first few elements, the 
binding energy in the tervalent compounds is greater than for the 
univalent compounds, and this difference exceeds the excitation energy 
of the atom. 

In the elements of the fourth group, the ground state has the con-
figuration s2p2 with a spin of 1, and the adjacent excited state has a 
configuration sp3 with a spin 2. The valencies 2 and 4 correspond to 
these states. As in the third group, the first two elements (carbon, 
silicon) exhibit mainly the higher valency (though the compound CO, 
for example, forms an exception), and the tendency to exhibit the lower 
valency increases with the atomic number. 

In the atoms of the elements of the fifth group, the ground state has 
the configuration s2p3 with a spin S = 3/2, so that the corresponding 
valency is three. An excited state of higher spin can be obtained only 
by the transition of one of the electrons into the shell with the next 
higher value of the principal quantum number. The nearest such state 
has the configuration spzs' and a spin S = 5/2 (by s' we conventionally 
denote here an s state of an electron with a principal quantum number 
one greater than in the state s). Although the excitation energy of this 
state is comparatively high, the excited atom can still form a stable 
compound. Accordingly, the elements of the fifth group behave as 
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both tervalent and quinquevalent elements (thus, nitrogen is tervalent 
in N H 3 and quinquevalent in HNO3). 

In the sixth group of elements, the spin is 1 in the ground state 
(configuration s2p*), so that the atom is bivalent. The excitation of one 
of the ρ electrons leads to a state s2p3s' of spin 2, while the excitation 
of an s electron in addition gives a state spzs'p' of spin 3. In both 
excited states the atom can enter into stable molecules, and accordingly 
exhibits valencies of 4 and 6. The first element of the sixth group 
(oxygen) shows only valency 2, while the subsequent elements show 
higher valencies also (thus, sulphur in H 2 S, S 0 2 , SO3 is respectively 
bivalent, quadrivalent and sexivalent). 

In the seventh group (the halogen group), the atoms are univalent 
in the ground state (configuration s2ps, spin S = y). They can, how-
ever, also enter into stable compounds when they are in excited states 
having configurations s2p*s\ s2ps'zp\ spzs'p'2 with spins 3/2, 5/2, 7/2 
and valencies 3, 5, 7 respectively. The first element in the group 
(fluorine) is always univalent, but the subsequent elements also exhibit 
the higher valencies (thus, chlorine in HC1, HC10 2, HCIO3, HCIO4 is 
respectively univalent, tervalent, quinquevalent and septivalent). 

Finally, the atoms of the elements in the group of inert gases have 
completely filled shells in their ground states (so that the spin S — 0), 
and their excitation energies are high. Accordingly, the valency is zero, 
and these elements are chemically inactive. 

When atoms combine to form a molecule, the completed electron 
shells in the atoms are not much changed. The distribution of the 
electron density in the incomplete shells, on the other hand, may be 
considerably altered. In the most clearly defined cases of what is called 
heteropolar binding, all the valency electrons pass over from their 
own atoms to other atoms, so that we may say that the molecule 
consists of ions with charges equal (in units of e) to the valency. 
The elements of the first group are electropositive: in heteropolar 
compounds they lose electrons, forming positive ions. As we pass to 
the subsequent groups the electropositive character of the elements 
becomes gradually less marked and changes into electronegative 
character, which is present to the greatest extent in the elements of the 
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seventh group. Regarding heteropolarity, however, the following re-
mark should be made. If a molecule is heteropolar, this does not mean 
that, on moving the atoms apart, we necessarily obtain two ions. 
Thus, from the molecule CsF we should in fact obtain the ions C s + 

and F~, but the molecule NaF gives in the limit the neutral atoms Na 
and F (since the affinity of fluorine for an electron is greater than the 
ionisation potential of caesium but less than that of sodium). 

In the opposite limiting case of what is called homopolar binding, the 
atoms in the molecule remain neutral on the average. Homopolar 
molecules, unlike heteropolar ones, have no appreciable dipole mo-
ment. The difference between the heteropolar and homopolar types is 
purely quantitative, and any intermediate case may occur. 

Let us now turn to the elements of the intermediate groups. Those 
of the palladium and platinum groups are very similar to the elements 
of the principal groups as regards their valency properties. The only 
difference is that, owing to the comparatively deep position of the d 
electrons inside the atom, they interact only slightly with the other atoms 
in the molecule. As a result, "unsaturated" compounds, whose mole-
cules have non-zero spin (though in practice not exceeding \ ) , are 
often found among the compounds of these elements. Each of the 
elements can exhibit various valencies, and these may differ by unity, 
and not only by two as with the elements of the principal groups 
(where the change in valency is due to the excitation of some electron 
whose spin is compensated, so that the spins of two electrons are 
simultaneously released). 

The elements of the rare-earth group are characterised by the pre-
sence of an incomplete / shell. The / electrons lie much deeper than 
the d electrons, and therefore take no part in the valency. Thus the 
valency of the rare-earth elements is determined only by the s and ρ 
electrons in the incomplete shells.* However, it must be borne in mind 
that, when the atom is excited,/electrons may pass into s and ρ states, 
thereby increasing the valency by one. Hence the rare-earth elements 

t The d electrons which are found in the incomplete shells of the atoms of some 
rare-earth elements are unimportant, since these atoms in practice always form 
compounds in excited states where there are no d electrons. 
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too exhibit valencies differing by unity (in practice they are all tervalent 
and quadrivalent). 

The elements of the iron group occupy, as regards their valency 
properties, a position intermediate between the rare-earth elements 
and those of the palladium and platinum groups. In their atoms, the 
d electrons lie comparatively deep, and in many compounds take no 
part in the valency bonds. In these compounds, therefore, the elements 
of the iron group behave like rare-earth elements. Such compounds 
include those of ionic type (for instance FeCl 2, FeCl 3), in which the 
metal atom enters as a simple cation. Like the rare-earth elements, the 
elements of the iron group can show very various valencies in these 
compounds. 

Another type of compound of the iron-group elements is formed by 
what are called complex compounds. These are characterised by the 
fact that the atom of the intermediate element enters into the molecule 
not as a simple ion, but as part of a complex ion (for instance the ion 
MnO" in KMn0 4 , or the ion Fe(CN) 4 - in K 4Fe(CN) 6). In these 
complex ions, the atoms are closer together than in simple ionic 
compounds, and in them the d electrons take part in the valency bond. 
Accordingly, the elements of the iron group behave in complex 
compounds like those of the palladium and platinum groups. 

Finally, it must be mentioned that the elements copper, silver and 
gold, which in §52 we placed among the principal groups, behave as 
intermediate elements in some of their compounds. These elements 
can exhibit valencies of more than one, on account of a transition of 
an electron from a d shell to a ρ shell of nearly the same energy (for 
example, from 3d to Ap in copper). In such compounds the atoms have 
an incomplete d shell, and hence behave as intermediate elements: 
copper like the elements of the iron group, and silver and gold like 
those of the palladium and platinum groups. 
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§59. Vibrational and rotational structures of terms in the 
diatomic molecule 

As has been pointed out at the beginning of this chapter, the great 
difference in the masses of the nuclei and the electrons makes it pos-
sible to divide the problem of determining the energy levels of a mole-
cule into two parts. We first determine the energy levels of the system 
of electrons, for nuclei at rest, as functions of the distance between 
the nuclei (the electron terms). We can then consider the motion of the 
nuclei for a given electron state; this amounts to regarding the nuclei 
as particles interacting with one another in accordance with the law 
Un(r), where Un is the corresponding electron term. The motion of the 
molecule is composed of its translational displacement as a whole, 
together with the motion of the nuclei about their centre of mass. 
The translational motion is, of course, without interest, and we can 
regard the centre of mass as fixed. 

We shall consider only the electron terms in which the total spin 
S of the molecule is zero (the singlet terms). This simple case presents 
all the principal qualitative features of the structure of energy levels 
in the diatomic molecule. 

The problem of the relative motion of two particles (the nuclei) 
which interact according to a law U{r) depending only on the distance 
r between them reduces to that of the motion of a single particle of 
mass Μ (the reduced mass of the two particles) in a central field U(r). 
This reduces in turn to that of a one-dimensional motion in a field 
where the effective potential energy is equal to the sum of U and the 
centrifugal energy (cf. §29). 

When the spin is zero, the total angular momentum J of the molecule 
consists of the orbital angular momentum L of the electrons and the 
angular momentum of rotation of the nuclei. The latter angular 
momentum therefore corresponds to the operator J—L, and the 
centrifugal-energy operator is 



210 The Diatomic Molecule §59 

The effective potential energy is defined as 

The last term depends only on the electron state, and does not contain 
the quantum number / ; it can be included in the energy U(r). We shall 
show that the same is true of the penultimate term. 

If the projection of the angular momentum on some axis has a 
definite value, the mean value of the angular momentum vector is 
directed along that axis (see the end of §15). Thus, if η denotes a unit 
vector along the z-axis, L = An. In classical mechanics, the angular 
momentum of rotation of a system of two particles (the nuclei) is 
r x p , where r = rn is the radius vector joining the two particles and 
ρ is the momentum of their relative motion; this vector is perpen-
dicular to n. In quantum mechanics, the same is true of the rotational 
angular momentum operator: (J—L). η = 0, or J . η = L . η. Since the 
operators are equal, so are their eigenvalues; since n . L = Lz = Λ9 it 
follows that 

Jz = A. (59.3) 

Thus L . J in the penultimate term in (59.2) is equal to η . 3A = Λ2, 
i.e. is independent of / . Redefining the function U(r)9 we can write 
the effective potential energy in the form 

(59.4) 

where the averaging is taken with respect to the state of the molecule 
for a fixed value of r. 

Let us carry out this averaging for a state in which the molecule has 
a definite value of the squared total angular momentum J 2 == J{J+1) 
and a definite value L2 = A of the projection of the electron angular 
momentum on the axis of the molecule (the z-axis). Expanding the 
square in (59.1) gives 

(59.2) 

(59.1) 
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On solving the one-dimensional Schrodinger's equation with this 
potential energy, we obtain a series of energy levels. We arbitrarily 
number these levels (for each given J) in order of increasing energy, 
using a number ν = 0, 1, 2 , . . . ; υ = 0 corresponds to the lowest 
level. Thus the motion of the nuclei causes a splitting of each electron 
term into a series of levels characterised by the values of the two 
quantum numbers / and v. 

The dependence of the energy levels on the quantum numbers can-
not be completely calculated in a general form. Such a calculation is 
possible only for low excited levels which lie not too far above the 
ground level. Small values of the quantum numbers J and ν corre-
spond to these levels. It is with such levels that we are in fact most 
often concerned in the study of molecular spectra, and hence they are 
of particular interest. 

The motion of the nuclei in slightly excited states can be regarded 
as small vibrations about the equilibrium position. Accordingly we 
can expand U{r) in a series of powers of | = r—re, where re is the value 
of r for which U(r) has a minimum. Since U'(re) = 0, we have as far 
as terms of the second order 

where Ue = U(re), and ω = VW\re)/M] is the frequency of the vibra-
tions (see Mechanics and Electrodynamics, §17). 

In the second term in (59.4)—the centrifugal energy— it is sufficient 
to put r = re. Thus we have 

where Β = h2j2Mr2

e = h2/2I is what is called the rotational constant 
(I = Mr\ is the moment of inertia of the molecule). 

The first two terms in (59.5) are constants, while the third corre-
sponds to a one-dimensional harmonic oscillator. Hence we can at 
once write down the required energy levels: 

U(r) = ΖΙβ+\Μωψ, 

Uj(r) = Ue+BJ(J+l)+±Ma>H2, (59.5) 

Ε = Ue+BJ(J+l)+tuo(v+\). (59.6) 

Thus, in the approximation considered, the energy levels are composed 
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of three independent parts: 

E=Ee!+Er+Ev. (59.7) 

The term Eel = Ue is the electron energy (including the energy of the 
Coulomb interaction of the nuclei); the second term 

Er =BJ(J+l) (59.8) 

is the rotational energy from the rotation of the molecule.1 Since the 
projection of the angular momentum cannot exceed its magnitude / , 
it follows from (59.3) that the quantum number / can take only the 
values 

J = A, A+U A+2, . . . . (59.9) 

Finally, the third term in (59.7) 

Ev = tuo(v+\) (59.10) 

is the energy of the vibrations of the nuclei within the molecule. The 
number υ denumerates, by definition, the levels with a given J in 
order of increasing energy; it is called the vibrational quantum number. 

For a given form of the potential energy curve U(r\ the frequency 
ω is inversely proportional to \/M. Hence the intervals AEV between 
the vibrational levels are proportional to l/\/M. The intervals AEr 

between the rotational levels contain in the denominator the moment 
of inertia 7, and are therefore proportional to 1/M. The intervals 
AEel between the electron levels, however, are independent of M9 like 
the levels themselves. Since m/M (m being the electron mass) is a 
small parameter in the theory of diatomic molecules, we see that 

AEei» AEV » AEr · (59.11) 

These inequalities show that the distribution of the energy levels of 
the molecule is rather unusual. The vibrational motion of the nuclei 
splits the electron terms into levels lying comparatively close together. 

t A rotating system of two rigidly connected particles is often called a rotator. 
Formula (59.8) gives the quantum energy levels of a rotator. 
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These levels, in turn, exhibit a fine splitting due to the rotational mo-
tion of the molecule. As an example, we give the values of Ue9 ϋω, 
and Β (in electron-volts) for a few typical molecules: 

H 2 N 2 o 2 

-u. 4.7 7.5 5.2 

fill) 0.54 0.29 0.20 

7.6 0.25 0.18 

§60. Parahydrogen and orthohydrogen 

In §56 we have already examined some symmetry properties of the 
states of a diatomic molecule. These pertained to the electron terms, 
i.e. characterised the behaviour of the electron wave function in trans-
formations not affecting the coordinates of the nuclei. When the mo-
tion of the nuclei (vibration and rotation), is included in the state of 
the molecule, new symmetry properties appear which relate to the 
molecule as a whole. Here we shall discuss an interesting effect arising 
from the symmetry of states of diatomic molecules that consist of like 
atoms (belonging not only to the same element but to the same iso-
tope, so that the two nuclei are identical), and take the particular case 
of a hydrogen molecule in its electron ground state (the singlet state 

The Hamiltonian of a molecule of like atoms is invariant with respect 
to an interchange of the nuclei. There is consequently a new symmetry 
property of the states: the wave function of the molecule may be 
symmetric or antisymmetric with respect to a change in the sign of 
the radius vector r from one nucleus to the other. 

The wave function of the molecule is the product of the electron 
and nuclear wave functions. It has been shown in §59 that the latter 
is formally identical with the wave function of a single particle with 
orbital angular momentum / in a centrally symmetric field U(r). From 
this point of view, the transformation r — — r is an inversion of the 
coordinates with respect to the centre of the field, and according to 
(19.5) such a transformation multiplies the wave function by (—l) 7. 

15 
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The electron wave function also depends on the coordinates of the 
nuclei as parameters. For the electron ground term of the molecule, 
this function is symmetrical with respect to interchange of the nuclei.1" 
Hence the factor (— \ ) J determines the symmetry or antisymmetry 
not only of the nuclear part but also of the entire wave function of the 
molecule. 

In §46 we have established a general theorem that, for a system of 
two like particles with spin i = y , the states symmetrical with respect 
to the coordinates of the particles can occur only for a zero total 
spin I of the particles, and the antisymmetric states only for I = 1. 
This rule can be applied to the two nuclei in the hydrogen molecule 
(protons with spin -|·), and the result is that, when the nuclear spins 
are parallel ( 7 = 1 ) the molecule in its normal electron state must 
have an odd rotational angular momentum J; when the nuclear spins 
are antiparallel (I = 0), J must be even. This is a noteworthy instance 
of the quantum-mechanical exchange effect: the nuclear spins exert a 
strong indirect influence on the molecular terms, although their direct 
influence on the energy (the hyperfine structure of the terms) is en-
tirely negligible. 

Since the magnetic moments of the protons are extremely small, 
and hence their spins interact only weakly with the electrons in the 
molecule, the probability of a change in I is very small even in colli-
sions between molecules. Hence the molecules with 1=1 and 1 = 0 
behave almost as different forms of matter; they are referred to as 
orthohydrogen and parahydrogen molecules respectively. 

The ground level of the parahydrogen molecule corresponds to the 
rotational quantum number J = 0. For the orthohydrogen molecule, 
which can have only odd values of / , the ground level is / = 1, which 
is higher than the ground level of parahydrogen. 

t This property corresponds to the general empirical rule stated in §56, whereby 
in the majority of diatomic molecules the normal electron state is completely 
symmetrical. It can also be shown directly that the symmetry with respect to inter-
change of the nuclei follows automatically from the other properties of the ΧΣ+ 
state: the symmetry under reflection in a plane through the axis of the molecule 
and under change of sign of all the electron coordinates, the coordinates of the 
nuclei remaining unchanged. 
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§61. Van der Waals forces 

Let us consider two atoms which are at a great distance from each 
other (relative to their size), and determine the energy of their inter-
action. In other words, we shall discuss the determination of the form 
of the electron terms Un(r) when the distance between the nuclei is large. 

To solve this problem we apply perturbation theory, regarding the 
two isolated atoms as the unperturbed system, and the potential energy 
of their electrical interaction as the perturbation operator. As we know 
(see Mechanics and Electrodynamics, §64), the electrical interaction 
of two systems of charges at a large distance r apart can be expanded 
in powers of 1 \r, and successive terms of this expansion correspond 
to the interaction of the total charges, dipole moments, quadrupole 
moments, etc., of the two systems. For neutral atoms, the total charges 
are zero. The expansion here begins with the dipole-dipole interaction 
( ~ 1 /r 3 ) ; then follow the dipole-quadrupole terms (~ 1 /r 4), the quad-
rupole-quadrupole terms (~ 1/f*5), and so on. 

Let us first suppose that both atoms are in the S state. Then it is 
easily seen that there is no interaction between the atoms in the first 
approximation of perturbation theory. The energy of the interaction 
of the atoms is there determined as the diagonal matrix element of 
the perturbation operator, calculated with respect to the unperturbed 
wave functions of the system (expressed in terms of products of the 
wave functions for the two atoms). In S states, however, the diagonal 
matrix elements, i.e. the mean values of the dipole, quadrupole, etc. 
moments, are zero; this follows since the distribution of charges in 
the atoms is spherically symmetrical on the average. 

In the second approximation it is sufficient to restrict ourselves to 
the dipole interaction in the perturbation operator, since this decreases 
least rapidly as r increases, i.e. to the term 

V= [-di .d2+3(di .n)(da .n)]/ /*, (61.1) 

where η is a unit vector in the direction joining the two atoms. Since 
the non-diagonal matrix elements of the dipole moment are in general 
different from zero, we obtain in the second approximation of per-
is* 
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turbation theory a non-vanishing result which, being quadratic in V, 
is proportional to l/r e . The correction in the second approximation 
to the lowest eigenvalue is always negative (§32). Hence we obtain 
for the interaction energy of atoms in their normal states an expression 
of the form 

U(f) = - constant//-6, (61.2) 

where the constant is positive (F. London 1928). 
Thus two atoms in normal S states, at a great distance apart, attract 

each other with a force (—dU/dr) which is inversely proportional to 
the seventh power of the distance. The attractive forces between 
atoms at large distances are usually called van der Waals forces. These 
forces cause the appearance of minima on the potential energy curves 
of the electron terms even for atoms which do not form a stable 
molecule. These depressions, however, are very shallow (being only 
tenths or even hundredths of an electron-volt in depth) and lie at 
distances several times greater than the distances between atoms in 
stable molecules. 

Formula (61.2) is also important because it represents the inter-
action forces at large distances between atoms in any normal (not 
necessarily S) states, provided that this interaction is averaged over 
all possible orientations of the atoms; the interaction of atoms in a 
gas, for example, is of this type.1" Although the mean dipole moment 
is zero in any stationary state, the mean value of the quadrupole mo-
ment may be non-zero for an atom with a non-zero angular mo-
mentum / (§54). The quadrupole-quadrupole term in the interaction 
operator may therefore yield a non-zero result in the first approxima-
tion of perturbation theory. But the mean values of the quadrupole 
moment (and of the higher-order multipole moments) depend on the 
orientation of its angular momentum J, and vanish on averaging 
with respect to this orientation, by symmetry. 

t The law derived above on the basis of non-relativistic theory is, however, 
valid only so long as the retardation of electromagnetic interactions is unimportant. 
For this to be so, the distance r between the atoms must be small compared with 
^/ω 0 Λ , where ω 0 η are the frequencies of transitions between the ground state and 
the excited states of the atom. 
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P R O B L E M 

Derive a formula giving the van der Waals forces in terms of the matrix ele-
ments of dipole moments for two like atoms in S states. 

SOLUTION. The answer is obtained by applying the general formula (32.10) of 
perturbation theory to the operator ( 6 1 . 1 ) . On account of the isotropy of the atoms 
in the S state it is evident a priori that, on summation over all intermediate states, 
the squared matrix elements of the three components of each of the vectors di and 
d 2 give equal contributions, while the terms which contain products of different 
components give zero. The result is 

where E0 and En are the unperturbed values of the energies of the ground state 
and excited states of the atom. 



C H A P T E R 9 

ELASTIC C O L L I S I O N S 

§62. The scattering amplitude 

In classical mechanics, collisions of two particles are entirely deter-
mined by their velocities and impact parameter (i.e. the distance at 
which they would pass if they did not interact). In quantum mechanics 
the very wording of the problem must be changed, since in motion 
with definite velocities the concept of the path is meaningless, and 
therefore so is the impact parameter. The purpose of the theory is here 
only to calculate the probability that, as a result of the collision, the 
particles will deviate (or, as we say, be scattered) through any given 
angle. We are speaking here of what are called elastic collisions, in 
which the particles, or the internal state of the colliding particles if 
these are complex, are left unchanged. 

The problem of an elastic collision, like any problem of two bodies, 
amounts to a problem of the scattering of a single particle, with the 
reduced mass, in the field U(r) of a fixed centre of force.1" This sim-
plification is effected by changing to a system of coordinates in which 
the centre of mass of the two particles is at rest. The scattering angle 
in this system we denote by Θ. It is simply related to the angles # 1 and 
# 2 giving the deviations of the two particles in the laboratory system 
of coordinates, in which the second particle (say) was at rest before 

t Here we neglect the spin-orbit interaction of the particles (if they have spin). 
By assuming the field to be centrally symmetric, we exclude from consideration 
also processes such as the scattering of electrons by molecules. 

218 
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the collision: 

tan #1 = m 2 sin 0/(mi-hw 2 cos 0), # 2 = 1(^—0), (62.1) 

where mi, m 2 are the masses of the particles (see Mechanics and 
Electrodynamics, §14). In particular, if the masses of the two particles 
are the same (mi = m 2), we have simply 

*i # 2 = - K * - 0 ) ; (62.2) 

the sum # i + # 2 = \π, i.e. the particles diverge at right angles. 
In what follows, we shall always use (unless the contrary is specific-

ally stated) a system of coordinates in which the centre of mass is at 
rest, and m will denote the reduced mass of the colliding particles. 

A free particle moving in the positive direction of the z-axis is de-
scribed by a plane wave, which we take in the form ψ = elkz, i.e. 
the current density in the wave is equal to the particle velocity v\ 
cf. the normalisation to unit current in (21.6). The scattered particles 
must be described, at a great distance from the scattering centre, by 
an outgoing spherical wave of the form f(&)elkrjr, where / (0) is some 
function of the scattering angle 0 (the angle between the z-axis and the 
direction of the scattered particle).1* Thus the solution of Schrodinger's 
equation for a scattering process in a field U(r) must have at large 
distances the asymptotic form 

ψ % eikz+f(6)eikrlr. (62.3) 

The function / (0) is called the scattering amplitude. The probability 
per unit time that the scattered particle will pass through a surface 
element dS = r2 do (where do is an element of solid angle) is 
(v/r2)\f\2 dS = v\f\2do.t Its ratio to the current density in the 

* An outgoing spherical wave contains an exponential factor eikr, and an ingoing 
wave contains a corresponding factor e~ikr, in place of the trigonometric factor in 
the stationary spherical waves discussed in §30. 

t It is supposed that the incident beam of particles is defined by a wide (to avoid 
diffraction effects) but finite diaphragm, as happens in actual experiments on 
scattering. There is therefore no interference between the two terms of the expres-
sion (62.3); the squared modulus \ψ\2 is taken at points where there is no inci-
dent wave. 
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incident wave is 
da = | 2 do. (62.4) 

This quantity has the dimensions of area, and is called the effective 
cross-section, or simply the cross-section, for scattering into the solid 
angle do. If we put do = 2π sin θ άθ, we obtain for the cross-section 

da = 2nsm6 |/(6>)|2d0 (62.5) 

for scattering through angles in the range from θ to θ+άθ. 
A solution of Schrodinger's equation for scattering in a central field 

is axially symmetric about the z-axis. The general form of such a solu-
tion can be represented as the expansion 

(62.6) 

where the Rkl are radial functions satisfying equation (29.8) (with 
energy Ε = h2k2/2m). The asymptotic form of these functions at large 
distances is given by the stationary waves (30.10). We shall show how 
the scattering amplitude may be expressed in terms of the phase shifts 
ό/ of these functions. 

Substituting (30.10) in (62.6), we can write the general asymptotic 
form of the wave function as 

We have to choose the coefficients Al such that this function has the 
form (62.3). To do this, we use the expansion of a plane wave in terms 
of spherical waves, obtained in §30. For large r, according to (30.16), 
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The formula solves the problem of expressing the scattering amplitude 
in terms of the δι (Η. Faxen and J. Holtsmark 1927). Each term of the 
sum is called a partial amplitude. 

If we integrate da over all angles, we obtain the total scattering 
cross-section a, which is the ratio of the total probability (per unit 
time) that the particle will be scattered to the current density. Sub-
stituting (62.8) in the integral 

π 

ο = 2π$ | / (0) |*sin0d0, 
ο 

and recalling that the polynomials P/(cos 0) are orthogonal, we see 
that only the squares of the individual terms in the sum (62.8) remain, 
and the normalisation integral (30.13) then gives 

(62.8) 

For the coefficient of eikr/r in the difference ip—eikz, we obtain 

(2/+ l)P/(cos 0) [ ( - iye-
ikr-e2i'ieikrl (62.7) 

Hence 

The difference ip—e>kz must represent an outgoing wave, i.e. must 
contain no term in e~ikT\ thus 

(62.9) 

§63. The condition for quasi-classical scattering 

The limiting transition from the exact quantum-mechanical for-
mulae of scattering theory, derived in §62, to the classical formulae is 
quite lengthy and will not be given here. Instead, some comments 
will be made about the conditions under which this transition is 
possible. 
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If we can speak of classical scattering through an angle 0 when the 
particle is incident at an impact parameter ρ, it is necessary that the 
quantum-mechanical indeterminacies of these two quantities should 
be relatively small: Δρ <*c ρ, Δ0 <$c 0. The indeterminacy in the scatter-
ing angle is of the order of magnitude Αθ ~ Ap/p, where ρ is the 
momentum of the particle and Ap is the indeterminacy in its transverse 
component. Since Ap ~ h/Αρ ^> h/ρ, we have ΑΘ ̂ > h/ρρ, and thus 

ey>hlqmv. (63.1) 

Replacing the angular momentum mvq by hi, we obtain θ I ^> 1, and 
therefore / : » 1, in accordance with the general rule that the quasi-
classical case corresponds to large values of the quantum numbers 
(§27). 

The classical angle of deviation of the particle can be estimated as 
the ratio of the transverse momentum increment Ap during the "colli-
sion time" τ ~ ρ/ν and the original momentum mv. The force acting 
on the particle at a distance ρ in a field U{r) is F = —άί/(ρ)/άρ; hence 
Ap ~ FQ/V9 SO that 0 ~ qF/mv2. This estimate is strictly valid only if 
0 <sc 1, but it can be applied to give an order of magnitude even if 
0 ^ 1 . Substitution in (63.1) gives the condition for quasi-classical 
scattering in the form 

Fq* » ho. (63.2) 

If the field U{r) decreases more rapidly than the condition (63.2) 
always ceases to be satisfied for sufficiently large ρ. Small 0, however, 
correspond to large ρ; thus scattering through sufficiently small angles 
is never classical. The quantum nature of the scattering through small 
angles is, in particular, the reason why the total scattering cross-section 
may be finite. In this connection it may be recalled that in classical 
mechanics, for any field which vanishes only as r ~ (i.e. which is 
not sharply cut off at a finite distance), a particle passing at a large 
but finite impact parameter undergoes a deviation through a small 
but non-zero angle; the total cross-section, therefore, is always infinite. 
It is clear from the above discussion that in quantum mechanics the 
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corresponding argument is invalid, since the concept of scattering 
ceases to be meaningful when the scattering angle is less than the 
quantum indeterminacy of the direction of motion of the particle. 

§64. Discrete energy levels as poles of the scattering amplitude 

There is a relation between the law of scattering of particles (with 
a positive energy E) in a given field and the discrete spectrum of 
negative energy levels (if any) in that field. 

To simplify the formulae, we shall consider the motion of particles 
with orbital angular momentum 1 = 0. The asymptotic expression for 
the wave function with positive energy at a large distance from the 
centre of the field may be written as a sum of outgoing and ingoing 
spherical waves: 

(64.1) 

The coefficients a(k) and b{k) are some functions of fc, which could be 
determined only by solving Schrodinger's equation at short distances 
and using the finiteness of the wave function for r = 0. The two 
functions are then not independent, but are related in a simple manner. 
One relation follows immediately because the function ψ, being 
the wave function of a non-degenerate state, must be real: 

b{k) = a\k). (64.2) 

If we next consider formally any values of k (real or complex), a(k) 
and b(k) become functions of a complex variable, still related by (64.2), 
and also by 

a(-k) = b(k), (64.3) 

which follows from the definition of a and b in (64.1) (the coefficients 
a and b being interchanged when A: is replaced by —k). The function 
ψ with complex k, being an analytical continuation of the solution 
of Schrodinger's equation with real k, is again the solution of this 
equation that is finite at the origin. It will not, however, satisfy the 
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condition of jBniteness in all space: when r o o , one of the terms in 
(64.1) (depending on the sign of the imaginary part of k) becomes 
infinite. 

In particular, when k is purely imaginary, the expression (64.1) 
gives the asymptotic form of the solution of Schrodinger's equation 
with a negative energy E. But, for this solution to correspond to a 
stationary state of the discrete spectrum, the function ψ must remain 
finite as r o o . To each negative value of Ε there corresponds a pair 
of purely imaginary values k = ±i<\Z(2m\E\)/Ji. With the upper sign, 
the second term in (64.1) does not satisfy the condition of finiteness as 
r o o ; thus, for a value of Ε corresponding to a discrete energy level, 
we must have 

b(i\k\) = 0 . (64.4) 

Similarly, when k = -/1 k\9 the function a{k) must vanish. 
Now, comparing (64.1) with the asymptotic expression for the wave 

function of a particle with energy Ε > 0 in the form (30.10) 

we see that the ratio a/b is related to the phase δ0 by 

e2i60ik) = a(k)lb(k). (64.5) 

This expression has a pole at the point where b(k) is zero. The partial 
amplitude for .s-wave scattering is 

and we therefore conclude that this amplitude as an analytic function 
of the complex variable k has poles in the upper half-plane of k with 
imaginary values of k corresponding to the energy levels of bound 
s states of the particle in the field. 

A similar relation exists between the energy levels of bound states 
with 1 ^ 0 and the poles of the corresponding partial scattering ampli-
tudes. 



§65 The scattering of slow particles 225 

§65. The scattering of slow particles 

Let us consider the properties of elastic scattering in the limiting 
case where the velocities of the particles undergoing scattering are so 
small that the de Broglie wavelength of a particle is large compared 
with the radius of action a of the scattering field1", and the energy is 
small compared with the field within that radius: 1 and 
k2h2/2m<c\U\. 

The probability of finding the particle near the centre of the field 
(at a distance much less than the wavelength of the particle) decreases 
rapidly as the orbital angular momentum / increases (cf. the end of 
§29). Thus ,ϊ-wave scattering (/ = 0) plays the principal role in slow-
particle scattering. In this case, to determine the properties of the 
scattering, we must find the limiting form of the dependence of the 
phase δ 0 on the wave number k when the latter is small. 

The wave function for an s state depends only on r. When r <> a 
(within the radius of action of the field), in the exact Schrodinger's 
eauation 

(65.1) 

(65.2) 

we can neglect only the term in k2: 

(the prime denoting differentiation with respect to r). At large dis-
tances, 1/fc, we can also omit the term in U(r), leaving 

(np)" = 0. (65.3) 

The general solution of this equation is 

(65.4) 

t The quantity a represents the linear dimension of the region of space in which 
the field U is significantly different from zero. For example, in the scattering of 
neutrons by nuclei, a is the nuclear radius; in the scattering of electrons by neutral 
atoms, it is the atomic radius. 
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Thus the scattering amplitude is constant, depending neither on the 
scattering angle nor on the velocity of the particles. In other words, the 
scattering of slow particles is isotropic, and the cross-section a = 
4JT(C2/CI)2 is independent of the energy.1* 

t In the above discussion it has been tacitly assumed that the field Uir) decreases 
sufficiently rapidly at large distances (r » a). It is easy to see just how rapid this 
decrease has to be. For large r, the second term in the function (65.4) is small in 
comparison with the first term. In order for the retention of the second term to be 
nevertheless legitimate, the small term ~ c^r* retained in (65.2) must still be large 
compared with the term ϋψ ~ Ucx omitted in going from (65.2) to (65.3). Hence it 
follows that U must decrease more rapidly than 1 /r 3. 

The values of the real constants C\ and c2 can in principle be determined 
only by solving equation (65.2) for a particular function U(r). 

At still greater distances, with r *> 1/A:, the term in U(r) can be 
omitted from (65.1), but the term in k2 cannot be neglected, so that 
we have 

i.e. the equation of free motion. The solution of this equation is 

(65.5) 

The coefficients have been chosen so that, for kr 1, this solution 
becomes (65.4); this ensures the "joining" of the solutions in the 
regions kr <?: 1 and kr ~ 1. 

We can write the sum (65.5) in the form 

and obtain for the phase δ0 

tan δ0 % δ0 = c2k/cu (65.6) 

since k is small, the phase δ0 is also small. Finally, retaining only the 
first term in (62.8), we find as the scattering amplitude 

(65.7) 
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P R O B L E M S 

PROBLEM 1. Determine the scattering amplitude for slow particles in a spheric al 
potential well of depth U0 and radius a: U(r) = - U0 for r < a, U(r) = 0 for 

r > a. 

SOLUTION. The wave number of the particles is assumed to satisfy the condi-
tions ka <c 1 and k<cx, where κ = \/(2mU0)/n. Equation ( 6 5 . 2 ) for the function 
χ = rip becomes 

χ" + κ 2χ = 0 

for r < a. The solution which makes ψ finite at r = 0 is 

χ = A sin ytr (r < a). 

For r > a, the function χ satisfies the equation %"+k2x = 0, whence 

χ = Β sin (&r+ <50) (r > a). 

From the continuity of χ'/χ at r = a, we obtain the equation 

κ cot κα — k cot (&Λ+ δ0) % k/(ka+ δ0), 

from which we determine <50. As a result, we have for the scattering amplitude 

tan κα-κα / 1 V 

If also xa <c 1 (i.e. (70 <c fp/ma2) we have 

/ = | β ( κ β ) » . ( 2 ) 

Formula (1) becomes inapplicable if i / 0 and a are such that κα is close to an odd 
multiple of \π. For such values of κα the discrete spectrum of negative energy 
evels in the potential well includes one which is close to zerot, and the scattering 
s described by formulae which we shall derive in §66. 

PROBLEM 2 . The same as Problem 1, but for scattering by a "potential hump": 
U(r) = U0 for r < a, U — 0 for r > a. 

SOLUTION. This case is obtained from that of a potential well by changing the 
sign of U09 i.e. κ ικ. Then, from (1), 

tanh κα—κα 
κα 

with κ — \/(2mU0)/h as before). In particular, in the limit κα » 1 (i.e. for large 
U0), 

f = — α, σ — Απα2. 

his corresponds to scattering by an impenetrable sphere of radius a; we notet 
at classical mechanics would give a result four times smaller (cr = πα2). 

t See §30, Problem 1. Equation (1) in the solution to that problem shows tha 
the energy level | Ε | «c U0 if sin [a V(2/wt/ 0)/#] ± 1. 
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§66. Resonance scattering at low energies 

Particular consideration must be given to the scattering of slow 
particles (ka 1) in an attractive field when the discrete spectrum of 
negative energy levels includes an s state whose energy is small compared 
with the value of the field U within its radius of action a. We denote 
this level by — ε (ε > 0). The energy Ε of the particle undergoing 
scattering, being small, is close to — ε, i.e. it is, as we say, almost in 
resonance with the level. This leads, as we shall see, to a considerable 
increase in the scattering cross-section. 

The existence of the shallow level can be taken into account in 
scattering theory by means of a formal method based on the following 
arguments. 

As in §65, we consider Schrodinger's equation in different parts of 
the field. The exact equation, with χ = rip, is 

In the "inner" region r<>awe can neglect (2mE/h2)x = k2% in com-
parison with χ": 

χ"-(2πι/&) U(r)x = 0, r ~ a. (66.1) 

In the "outer" region (r :» a), on the other hand, we can neglect U: 

%" + (2m//*2) Εχ=0, r a. (66.2) 

The solution of equation (66.2) must be "joined" at some η (such that 
1/k » Γι » a) to the solution of equation (66.1) which satisfies the 
boundary condition χ(0) = 0; the joining condition is that the ratio 
χ'/χ should be continuous. This ratio does not depend on the normali-
sation factor in the wave function. 

However, instead of considering the motion in the region r ~ 0, we 
apply to the solution in the outer region a suitably chosen boundary 
condition on χ'/χ for small r; since the solution in the outer region 
varies only slowly as r 0, we can formally apply this condition at 
the point r = 0. The equation (66.1) for the region r ~ a does not 
contain E; the boundary condition which replaces it must therefore 
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also be independent of the energy of the particle. In other words, it 
must be of the form 

Ιχ'/χ]^ο=-κ, (66.3) 

where κ is some constant. But, κ being independent of E, the same 
condition (66.3) must also apply to the solution of Schrodinger's 
equation for small negative energy Ε = — ε, i.e. to the wave function 
of the corresponding stationary state of the particle. For Ε = — ε we 
have from (66.2) 

χ = constant X R ' V M / * , 

and substitution of this function in (66.3) shows that κ is a positive 
quantity, 

κ = y/(2me)lh. (66.4) 

Let us now apply the boundary condition (66.3) to the wave func-
tion for free motion, 

χ = constant Xsin(fcr+S0), 

which is the exact general solution of equation (66.2) for Ε > 0. Thus 
we have for the required phase δ0 

cot S 0 = —κ/λ; 

= -ν(ε/Ε). (66.5) 

Since the energy Ε is here restricted only by the condition ka <c 1, and 
need not be small compared with ε, the phase δ0 may not be small, and 
the same is true of the .y-wave scattering amplitude. 

The partial scattering amplitudes with / ^ 0 are again small. Hence 
we can again regard the total amplitude as being the same as the 
5-wave scattering amplitude: 

= l/fc(cot80-0» 

and substitution from (66.5) gives 

(66.6) 
16 
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Thus the scattering is again isotropic (the amplitude (66.6) does not 
depend on the direction), but the scattering cross-section varies with 
the energy, and in the resonance region (Ε ~ ε) it is large compared 
with the squared radius of action of the field a2 (since l/k^$> a). The 
form of (66.7) does not depend on the detailed nature of the interaction 
of the particles at short distances, and is entirely determined by the 
energy of the resonance level.1" 

The above formula is somewhat more general than the assumption 
made in its derivation. Let the function U(r) be slightly modified; this 
alters also the value of the constant κ in the boundary condition (66.3). 
By an appropriate change in £7(r), κ can be made to vanish, and then 
to become small and negative. This gives the same formulae (66.6) 
for the scattering amplitude and (66.7) for the cross-section. In the 
latter, however, the quantity ε = Hhc2/2m is now simply a constant 
characteristic of the field U(r)9 and not an energy level in that field. 
In such cases the field is said to have a virtual leyel, since, although 
there is no actual level close to zero, a slight change in the field would 
be sufficient to cause one to appear, t 

§67. Bom's formula 

The scattering cross-section can be calculated in a general form in 
a very important case, namely that where the scattering field may be 
regarded (in its action on the motion of the particle undergoing scat-

t Formula (66.7) was first derived by E. Wigner (1933); the idea of the deriva-
tion given here is due to H. A. Bethe and R. E. Peierls (1935). 

J As an example, we may mention that both types of resonance (at real and 
virtual levels) occur in the scattering of neutrons by protons. For the interaction 
of a neutron with a proton when their spins are parallel, there is a real level at 
ε ~ 2.23 Mev (the ground state of the deuteron). The interaction of a neutron 
with a proton when their spins are antiparallel corresponds to a virtual level at 
ε = 0.067 MeV. 

This has a pole at k = ικ, in accordance with the general result 
(§64). The total cross-section a = 4π \ f\2 is 

(66.7) 
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tering) as a weak perturbation. We shall consider at the end of this 
section the conditions for the corresponding approximation to be 
applicable in the theory of scattering. 

The unperturbed motion of a particle incident on a scattering centre 
with momentum ρ = hk is described by a plane wave ^ ( 0 ) = elk'T, 
which satisfies Schrodinger's equation 

Δ ψ ( ο ) + £ V 0 ) = 0. 

We shall seek the solution of the exact equation 

in the form ψ = y ( 0 ) - f the small correction ψα) describing the 
scattered wave must satisfy the inhomogeneous (in equation 

where R = r—r' is the radius vector from the volume element dV to 
the "field point" r at which the value of φ is sought. If the time de-
pendence of the function ρ is given by a factor e~ikc\ then, with 

ρ = Q0(r)e-ikct, φ = Mr)*-**', 

we have for φ0 the equation 

Δ φ0+ Ιί2φ0 = - 4ττρ0, (67.2) 

(67.1) 

in which the second-order term ~ ψ α ) £ / has been omitted. 
The solution of this equation can be obtained directly by analogy 

with the equation of retarded potentials in electrodynamics: 

where ρ is a function of coordinates and time (see Mechanics and 
Electrodynamics, §79). Its solution is 

16* 



232 Elastic Collisions §67 

and the solution is 

<£o(r) = J eo(r') e** dV'jR. (67.3) 

In view of the obvious analogy between equations (67.2) and (67.1), 
the solution of the latter equation can be written 

We can now easily derive an asymptotic expression for this function 
at large distances r from the scattering centre. When r » r\ R = 
= |r—r'| % r—r'.n', where n' is a unit vector in the direction of 
k'; in the factor l/R in the integrand of (67.4), it is sufficient to put 
simply R ^ r. Then 

where k' = ka! is the wave vector of the particle after scattering. 
According to the definition (62.3), the coefficient of eikr\r in this 
function gives the required scattering amplitude; omitting the prime 
from the variables of integration, we can write the result as 

Here we have introduced the vector 

q = k - k , (67.6) 

whose absolute magnitude is 

? = 2fcs in |0 , (67.7) 

θ being the angle between k and k', i.e. the scattering angle. We see 
that the scattering amplitude with a particle momentum change hq is 
determined by the corresponding Fourier component of the field C/(r). 
The cross-section for scattering into the solid angle element do' is 

(67.8) 

(67.5) 

(67.4) 
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This formula was first obtained by M. Born (1926); the correspond-
ing approximation in collision theory is called the Born approxima-
tion. 

Formula (67.8) can also be obtained by another method, starting 
from the general formula (35.6) of perturbation theory, which gives 
the transition probability between two states of the continuous spec-
trum. In the present case, we are concerned with a transition between 
states of a freely moving particle, with momenta ρ and p', and the 
perturbation operator is represented by the function C/(r). As the 
"interval" of states dvf we take the volume element άρ'χ dp'y dp'z in 
momentum space. Then formula (35.6) becomes 

der = (Inmplh) | J" ψΡϋψρ dv\2 do'. (67.12) 

(67.9) 

The wave function of the final state must be normalised by the δ-fune-
tion in momentum space (cf. the remark preceding (35.1)); according 
to (12.10), the plane wave thus normalised is 

(67.10) 

The wave function of the initial state is normalised to unit current 
densitv: 

(67.11) 

(cf. (21.6)). Then the "probability" (67.9) will have the dimensions 
of area, and is the differential scattering cross-section. 

The δ-function appearing as a factor in (67.9) expresses the conser-
vation of energy in elastic scattering, whereby the magnitude of the 
momentum is unchanged: p' = p. This ό-function can be eliminated 
by changing to "spherical polar coordinates" in momentum space 
(i.e. by replacing dp'xdpy dpz by ρ 2 dp' do = \p' d(p'2) do') and in-
tegrating over p'2. The integration amounts to replacing p' by ρ (and 
multiplying the whole expression by 2m), and we obtain 
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Substituting in this expression (67.10) and (67.11), we return to (67.8). 
This derivation leads directly to the scattering cross-section, but leaves 
an undetermined phase in the scattering amplitude. 

In formulae (67.5) and (67.8), the scattering field U(r) is not assumed 
to be centrally symmetric. If, however, U = U(r\ the integration can 
be carried somewhat farther in a general form. To do so, we use 
spherical polar space coordinates r, φ, with the polar axis in the 
direction of the vector q; the polar angle is denoted by # to distinguish 
it from the scattering angle Θ. Then 

jU(r)e-j^dV= f j J I7(r) sin 0 d# άφ dr. 
0 0 0 

The integration over # and φ can be effected, and we thus obtain the 
following formula for the scattering amplitude in a centrally symmetric 
field: 

Let a be the radius of action of the field, and let us consider formula 
(67.13) in the limiting cases of small and large values of the product ka. 

When ka <sc 1 (small velocities), we can put sin qr % qr, so that the 
scattering amplitude is 

Here the scattering is isotropic and independent of the velocity, in 
accordance with the general results of §65. 

In the opposite limiting case of high velocities, when ka :» 1, the 
scattering is markedly anisotropic and is directed forward in a narrow 
cone of angle Δ0 ~ 1/ka: since outside this cone the quantity q is 
large (q » 1/fl), the factor sin qr is a rapidly oscillating function with 
variable sign in the region of action of the field (r <, a\ and the in-
tegral of its product with the slowly varying function U is almost 
zero. 

(67.13) 

(67.14) U(r) r2 dr. 
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where | U\ is the order of magnitude of the field within its radius of 
action. Thus we have the condition 

I U\ <Kh2/ma2

9 ka « 1. (67.16) 

To estimate the integral for ka y> 1, we first carry out the integra-
tion over the directions of r' (assuming the field to be a central field). 
Similarly to the derivation of (67.13), we find 

When ka ^> 1, the integral of the term containing the oscillating factor 
exp(2/fcr') is almost zero, and the integral of the second term is 
approximately \ U\a. Thus we obtain the condition 

\U\ «h2ka/ma2 = hv/a9 ka^>\. (67.17) 

U(r') β*''&*»+ν.2π sin 0 dti.r' dr' 

U{r') (e2ikr'-l)drf 

Let us now ascertain the conditions for this approximation to be 
valid. The derivation of formula (67.5) was based on the approximate 
solution of Schrodinger's equation in the form ψ = ψ ( 0 ) + ψ ( 1 ) , with 
the assumption that ψα) <?c ψ{0). It is sufficient to require the fulfilment 
of this condition in the most "dangerous" region near the scattering 
centre (r = 0); since | ^ ( 0 ) | = 1, this means that <§c 1. When r = 0, 
in the integral (67.4) we have R = r\ and so 

(67.15) 

We can obtain approximate estimates of this integral for small and 
large values of ka. 

When ka « 1, the exponential factor in the integrand can be re-
placed by unity, and then 
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It is evident that, if the field satisfies the condition (67.16), it also 
satisfies the weaker condition (67.17) when ka ^> 1. Thus in this case 
the Born approximation is valid for both small and large velocities. 
It is in any case valid for sufficiently large velocities, by (67.17), even 
if the condition (67.16) for it to be applicable at small velocities is not 
satisfied. 

P R O B L E M S 

PROBLEM 1. Determine, in the Born approximation, the scattering cross-section 
for a spherical potential well: U = — U0 for r < a, U — 0 for r > a. 

SOLUTION. The calculation of the integral in (67.13) gives 

The first of these expressions corresponds to the scattering amplitude (2) in §65, 
Problem 1, found there by a different method. 

PROBLEM 2. The same as Problem 1, but in a field U = (ct/r)e~r'a. 

SOLUTION. The calculation of the integral in (67.13) gives 

for k « 1, 

for ka » 1. 

In the limiting cases this formula gives 

The integration over all angles (which is conveniently effected by using the variable 
q = 2k sin \Θ and replacing άο by Inq dq/k2) gives the total scattering cross-
section 

The total cross-section is 

(1) 

The condition for these formulae to be applicable is found from (67.16) and 
(67.17) with oija instead of U: oanajh2 <c 1 or a/hv « 1. 

This potential represents a "screened" Coulomb field with a screening radius a. 
When a ©o, we have a pure Coulomb field, and the differential cross-section (1) 
becomes Rutherford's formula (§68). 
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§68. Rutherford's formula 

Let us now apply Born's formula to scattering in a Coulomb field, 
taking the particular case of scattering of particles with charge e by 
nuclei with charge Ze\ then U = Ze2/r. 

According to (67.5), the problem amounts to calculating the Fourier 
component of the function 1 jr. Instead of a direct calculation, it is 
more convenient to start from the differential equation 

Δ ( 1 / Γ ) = -4™5(r), (68.1) 

satisfied by the function 1/r (see Mechanics and Electrodynamics, 
(59.10)).1" But, with a view to certain other applications, we shall first 
consider the more general case of a function φ(τ) that satisfies the 
equation 

Αφ =-4πρ(τ) (68.2) 

with a given function 4πρ(τ) on the right-hand side. 
We expand the function φ(τ) as a Fourier integral: 

ψ(Γ) = J e*-^q d*q/(2n)\ d*q = dqx dqy dqz. (68.3) 

Then 
0 q = |0(r>?-*- r dF. (68.4) 

Taking the Laplacian of both sides of (68.3) and differentiating under 
the integral sign, we have 

Αφ = -$ q2e* - r0q dzqj(2nf. 

This means that the Fourier component of Αφ is (Αφ\ = — φφ^ We 
can also derive (Δφ)„ by taking the Fourier component of each side 
of equation (68.2): (Δφ\ = —4ττρα. Equating the two expressions, we 
have 

Φα = (4π/42)ρα 
= (4π/#2) J ρ ( Γ > - * · Γ dV. (68.5) 

t Another method of calculation is to begin with a "screened" Coulomb field, 
and then make the screening radius tend to infinity (see §67, Problem 2). 
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with the velocity ν of the particles undergoing scattering: hk = mv. 
Hence the scattering cross-section is 

der = (Ze 2 /2m^) 2 do/sin4 | θ , (68.8) 

in accordance with the classical Rutherford's formula. 
Because of the slow decrease of the Coulomb field, it is impossible 

to distinguish a finite region of space in which U is considerably 
greater than outside that region. The condition for the Born approxi-
mation to be applicable to scattering in this field is obtained from 
(67.17), the parameter a being replaced by the variable distance r: 

Ze2jhv<^ 1. (68.9) 

The opposite inequality is given by (63.2) as the condition for quasi-
classical scattering in a Coulomb field: Ze2/fiv » 1. In this case, 
the scattering must certainly be in accordance with Rutherford's for-
mula. Hence we see that Rutherford's formula is obtained in the li-
miting cases of both large and small velocities. This leads us to ex-
pect the result given by the quantum theory of scattering using the 
exact solution of Schrodinger's equation in a Coulomb field: the exact 
quantum-mechanical formula for the scattering cross-section is the 
same as the classical Rutherford's formula (N. F. Mott and W. Gor-
don 1928).1* 

t To avoid misunderstanding, however, it should be emphasised that the same 
does not apply to the formula (68.7) for the scattering amplitude: the exact ex-
pression for/(0) differs from (68.7) by a phase factor depending on Θ and v, which 
becomes unity only when the condition (68.9) is satisfied. 

If the function φ = 1/r, then ρ = o(r), and the integral on the right-
hand side of (68.5) is unity, so that 

( l / r ) q = 4 ^ 2 . (68.6) 

The scattering amplitude in a Coulomb field is, by (67.5) and (67.7), 

(68.7) 
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§69. Collisions of like particles 

The case where two identical particles collide requires special consid-
eration. The identity of the particles leads in quantum mechanics, as 
we know (§46), to the appearance of a peculiar exchange interaction 
between them. This has an important effect on scattering also (N. F. 
Mott 1930). 

Let us consider the particular case of a collision between two like 
particles with spin \ (two electrons, or two nucleons). The orbital 
wave function of a system of two such particles must be symmetric 
with respect to interchange of the particles if the total spin of the 
system S = 0, and antisymmetric if S = 1 (§46). The wave function 
which describes the scattering, and which is obtained by solving the 
usual Schrodinger's equation, must therefore be symmetrised or 
antisymmetrised with respect to the particles. An interchange of the 
particles is equivalent to reversing the direction of the radius vector 
joining them. In the coordinate system in which the centre of mass is 
at rest, this means that r remains unchanged, while the angle θ is 
replaced by ττ—θ (and so ζ = r cos θ becomes —z). Hence, instead of 
the asymptotic expression (62.3) for the wave function, we must write 

ψ = eikz±e-ikz+eikr[f$)±f(7i-e)]lr. (69.1) 

By virtue of the identity of the particles it is, of course, impossible 
to say which of them scatters and which is scattered. In the coordinate 
system in which the centre of mass is at rest, we have two equal incident 
plane waves, propagated in opposite directions {eikz and e~ikz in 
(69.1)). The outgoing spherical wave in (69.1) takes into account the 
scattering of both particles and, the probability current calculated 
from it gives the probability that either of the particles will be scattered 
into the element do of solid angle considered. The scattering cross-
section is the ratio of this current to the current density in either 
of the incident plane waves, i.e. is given, as before, by the squared 
modulus of the coefficient of eikr/r in the wave function (69.1). 

Thus, if the total spin of the colliding particles is zero, the scattering 
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cross-section is of the form 

d<r 0= \/(θ)+/(π-θ)\*άο, (69.2) 

while if the total spin is unity, it is 

άσ1 = \ΚΘ)-Απ-θ)\*άο. (69.3) 

The appearance of the "interference" term/(0)/*(jr- θ)+/*(θ)/(π- θ) 
characterises the exchange interaction. If the particles were different, 
as they are in classical mechanics, the probability that either of them 
would be scattered into a given element of solid angle do would simply 
be equal to the sum of the probabilities that one particle is deviated 
through an angle θ and the other through π—θ; in other words, the 
cross-section would be 

{ l / ( 6 ) l 2 + l / ( ^ - 6 ) l 2 } d o . (69.4) 

In formulae (69.2), (69.3) it is supposed that the total spin of the 
colliding particles has a definite value. If the system is not in a definite 
spin state, then to determine the cross-section it is necessary to average 
over all possible spin states, assuming them to be all equally probable. 
Of the total number of 2 x 2 = 4 different spin states of a system of two 
particles with spin \ , one state corresponds to zero total spin (spin 
projections \ , — γ) and three states to unit total spin (spin projections 
i ' h ~h - γ » - | » i ) - T h e n t h e Probability that the system will 
have S = 0 and S = 1 is ^ and -§- respectively. Hence the cross-section is 

do = J d o o + f dcri 

= {ΐ/(β> i2+ ι/(*-β) \2~-ίΜθ)ηπ-θ)+Γ(θ)/(τι-θ)]}άο. 
(69.5) 

As an example, we shall consider the collision of two fast electrons 
interacting by Coulomb's law (U = e2/r). If the condition (68.9) 
e2/hv <sc 1 is satisfied (where vis the velocity of the relative motion of 
the particles), we can use for the amplitude the Born-approximation 
expression (68.7). Here it must be noted that m denotes the reduced 
mass of the two particles, which in this case is \me if me is the electron 
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mass. Substitution of (68.7) in (69.5) gives 

do. (69.6) 

This refers to the system in which the centre of mass of the two 
electrons is at rest. For the laboratory system, where one of the elec-
trons is at rest before the collision, the corresponding formula is ob-
tained by simply replacing θ by 2$ (see (62.2)). Then 

cos 0 do, (69.7) 

where do is the element of solid angle in the new system of coordinates; 
when θ is replaced by 2$, do must be replaced by 4 cos # do, since 
sin θάθάφ =4 cos <# sin <# d# άφ. The final terms in (69.6) and (69.7) 
constitute the difference from the classical formulae (see Mechanics 
and Electrodynamics, § 16). 

P R O B L E M 

Determine the scattering cross-section for two identical particles with spin f, 
polarised in directions which differ by an angle a. 

SOLUTION. The dependence of the cross-section σ on the polarisations of the 
particles must be expressed by a term proportional to the scalar s i . s 2 , the product 
of the mean values of the spin vectors of the two particles; for particles polarised 
in directions making an angle α with each other, this product is \ cos a. We look 
for σ in the form a+46s ! . s 2 . When the particles are unpolarised, the second term 
disappears (ix = s 2 = 0) and according to (69.5) a = a = | (σ 0 +3σΊ) . If the two 
particles are polarised in the same direction (a = 0), i.e. have equal spin projections 
on the same direction, the total spin of the system is certainly 5 = 1 ; hence σ = 
a+b = σν Determining a and b from these two equations, we find 

σ = + 3 c r i ) + (σι~ °o) c ° s a}. 

§70. Elastic collisions between fast electrons and atoms 

Elastic collisions between fast electrons and atoms can be treated 
by means of the Born approximation if the velocity of the incident 
electron is large compared with those of the atomic electrons. 
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Owing to the large difference in mass between the electron and the 
atom, the latter may be regarded as at rest during the collision, and 
the system of coordinates in which the centre of mass is fixed is the 
same as the laboratory system, in which the atom is fixed. Then ρ and 
p' in the formulae of §67 denote the momenta of the electron before 
and after the collision, m the mass of the electron, and the angle θ is 
the same as the angle of deviation # of the electron. 

In §67 we have calculated the matrix element c7p,p of the interaction 
energy with respect to the wave functions of a free particle before 
and after the collision. In a collision with an atom it is necessary to 
take into account also the wave functions describing the internal state 
of the atom. Hence £/ρ,ρ in (67.8) must be replaced by the matrix 
element of the electron-atom interaction energy £/, taken with respect 
to the wave functions of the electron and the atom. Since the state of 
the atom is unchanged by an elastic collision, the matrix element is 
diagonal with respect to this state. Thus the formula for the cross-
section must be written 

do, (70.1) 

where ψ0 is the atomic wave function (depending on the coordinates of 
all the Ζ electrons in the atom), and dr = dV\ . . . d F z i s an element 
of the configuration space of the atomic electrons. 

The integral 
$WoUy)0 dr 

is the energy of interaction of the electron with the atom, averaged 
with respect to the state of the latter. It can also be written as e(j>(r)9 

where <j)(r) is the potential of the electric field due to the mean distri-
bution of charges in the atom. 

Denoting the density of this charge distribution by ρ(Γ), we have, 
for the potential φ, Poisson's equation: 

Αφ =— 4πρ(Γ). 

The required matrix element in (70.1) is the Fourier component 
βφ^ According to (68.5), this can be calculated by means of the Fourier 
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The variable hq is the momentum transfer from the electron to the 
atom. It is related to the electron velocity ν and the scattering angle # by 

q = (Imvjh) sin (70.5) 
cf. (67.7). 

Let us consider the limiting case of small q (small compared with 
l/#, where a is of the order of magnitude of the dimensions of the atom 

t We are neglecting exchange effects between the fast electron which undergoes 
scattering and the atomic electrons, i.e. we do not symmetrise the wave function 
of the system. The legitimacy of this procedure follows because the interference 
terms in the cross-section are removed by the rapid oscillation of the wave function 
of the incident electron within the volume of the atom over which the slowly vary-
ing wave function of the atomic electrons extends. 

component of the charge density ρ. The latter consists of the electron 
and nuclear charges: 

Q=-\e\n(r)+Z\e\d(r), 

where n(r) is the electron number density in the atom. Multiplying by 
e~iq'T and integrating, we have 

JQe-^TdV = - M jne-*-1 dV+Z\e\. 

Thus we obtain for the matrix element in question the expression 

ψοϋβ"^'νψ0 drdV - [Z-F(q)]9 (70.2) 

where F(a) is defined bv the formula 

F(q) = jne-v^dV (70.3) 

and is called the atomic form factor. It is a function of the scattering 
angle and of the velocity of the incident electron. 

Finally, substituting (70.2) in (70.1), we obtain the following ex-
pression for the cross-section for the elastic scattering of fast electrons 
by an atom1": 

(70.4) 
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(qa <§: 1)). Small scattering angles correspond to small q : # v0/v9 

where v 0 ~ h/ma is of the order of magnitude of the velocities of the 
atomic electrons. 

Let us expand F(q) as a series of powers of q. The zero-order term 
is J η dV, which is the total number Ζ of electrons in the atom. The 
first-order term is proportional to j rn(r) dV, i.e. to the mean value 
of the dipole moment of the atom; this vanishes identically (see §54). 

We must therefore continue the expansion up to the second-order 
term, obtaining 

z-F{q) = Ύ j (q-*?n <W = h 2 J* ™* ^V; 

substituting in (70.4), we obtain 

do. (70.6) 

In other words, we have Rutherford scattering at the nucleus of the 
atom. 

P R O B L E M 

Calculate the cross-section for the elastic scattering of fast electrons by a hydro-
gen atom in the ground state. 

SOLUTION. The wave function of the normal state of the hydrogen atom is (in 
ordinary units) ψ = π~1Ι2β~τ,αΒ, where aB = JP/me2 is the Bohr radius (see (31.15)). 
The electron density is η = | ψ | 2 . The integration over angles in (70.3) is effected as 

Thus, in the range of small angles, the cross-section is independent 
of the scattering angle, and is given by the mean square distance of the 
atomic electrons from the nucleus. 

In the opposite limiting case of large q (qa » 1), the factor e~iqr in 
the integrand in (70.3) is a rapidly oscillating function, and therefore 
the whole integral is nearly zero. Consequently, we can neglect F(q) 
in comparison with Z, so that 

(70.7) 
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in the derivation of formula (67.13), and gives 

17 

n(r) sin qr.rar 

Substituting in (70.4), we obtain 

The total cross-section is conveniently calculated by putting 

do = 2π sin # d# = 2n(fi\mvf q aq 

and integrating over q; here, of course, only the term of the lowest degree in \jv 
need be retained (in the Born approximation). The result is 

σ = (7π/3) (h/mv)2. 



C H A P T E R 10 

I N E L A S T I C C O L L I S I O N S 

§71. The principle of detailed balancing 

Collisions are said to be inelastic when they are accompanied by a 
change in the internal state of the colliding particles. Here we under-
stand "a change in the internal state" in the widest sense; in particular, 
the very nature of the particles or their number may be altered. For 
example, the change may consist in the excitation or ionisation of 
atoms, the excitation or disintegration of nuclei, and so on. Where a 
collision (e.g. a nuclear reaction) may be accompanied by various physi-
cal processes, these are referred to as various channels of the reaction. 

Using the symmetry of the theory under time reversal, we can 
establish a very general relation between the probabilities or cross-
sections for various inelastic processes. Let us consider, in particular, 
reactions of the form a+b -> c+d, with two particles in the initial 
state and two in the final state. 

For convenience, we shall first of all suppose that the particles are 
moving in some large but finite volume Ω (and later take the limit 
Ω o o ) . Then the spectrum of free motion of the particles is not 
continuous, but discrete with the energy levels very close together, 
the intervals tending to zero as Ω — oo (cf. the end of §27). 

Let wfi be the probability of a transition of the system of colliding 
particles from a state ι to a state / . f Each of these states is characterised 

t The suffix for the final state is written on the left of that for the initial state, 
for uniformity with the customary order of suffixes in the matrix elements of trans-
itions. 

246 
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by the types of particle and by definite velocity vectors and spin 
projections of these particles.t Time reversal changes, firstly, the signs 
of the velocities and spin projections!; the states obtained from / a n d / 
by these changes will be denoted by i* a n d / * and called the time-
reversed states corresponding to / and / . Moreover, the initial state 
becomes the final state, and vice versa. From the symmetry of the 
equations of quantum mechanics under time reversal, the probabilities 
of the transitions i -»f and/* — i* must be equal: 

This equation represents the principle of detailed balancing. 
Let us now change from probabilities to reaction cross-sections. 

We denote by p / 5 v, and p / 9 v^the momenta and velocities of the rela-
tive motion of the two initial and two final particles. Let dafi be the 
cross-section for collisions such that yfis in the direction of the solid-
angle element aof (in the centre-of-mass system of the two particles). 
The total energy of the two particles is, of course, the same before 
and after the collision (Et = Ef\ but we shall define a cross-section 
that is formally related to a range dEf of values of the energy in the 
final state, regarded as a variable quantity. This cross-section must 
be written in the form 

The (3-function here ensures that the law of conservation of energy is 
satisfied. 

The collision cross-section is, by definition, obtained by dividing 
the probability of the relevant process by the incident particle current 
density. The latter is ν{/Ω (the factor 1 /Ω is the particle number density 
corresponding to one particle in the volume Ω). It must also be noted 

t For "complex" particles (atoms and nuclei), the "spin" must here be taken 
as the total intrinsic angular momentum, made up of the spins and the orbital 
angular momenta of the internal motion of the constituent electrons and nucleons. 

t Each physical quantity behaves under time reversal in a definite manner that 
does not, of course, depend on the validity of a particular mechanics. The behaviour 
of the angular momentum is evident from the classical formula r x p = w r x v : it 
changes sign together with the velocity. 

Wfi Wi*f*. (71.1) 

aafi.b\Ef-E,)dEf. (71.2) 

17* 
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that the cross-section (71.2) relates to the ranges do,, and dEf, whereas 
the probability relates to specific values of vf and Ef. Hence, to find 
the cross-section άσβ9 we must multiply wfi by the number of quantum 
states belonging to the specified ranges of directions and of values of 
the velocity yf or the momentum p / t This number is 

Qp}apfaofl(2nhf\ 

cf. (27.8). 
Summarizing these arguments, we can derive the following relation 

between the cross-section and the probability: 

Hence 

here the velocity vf is written for dEf/dpf, the equality of these being 
obvious from the fact that the kinetic energy of the relative motion 
is one term in Ef. Lastly, writing the probability ny.,. in a similar 
form, equating the two expressions, and cancelling the common 
factors, we get 

(71.3) 

This relation gives the principle of detailed balancing in terms of 
cross-sections. The volume Ω does not appear in it, and the form of the 
relation is therefore unchanged in the limit Ω — o o . 

The equations (71.1) and (71.3) relate the probabilities or cross-
sections for the two processes / / and / * /*, which, though not 
strictly opposite processes (as i / a n d / i would be), are physically 
very close to being opposite. 

The difference between the transitions i / a n d i* / * disappears 
altogether if we consider the cross-sections integrated over all direc-
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the sum is taken over the spin projections of the particles; the factor 
before the summation and integration signs arises because we average, 
not sum, over quantities pertaining to the initial particles. Writing 
(71.3) in the form 

pf Aofi do,- = p} Act*/* uof 

and carrying out the operations mentioned, we get the required rela-
tion: 

giPiofi = g/pfaf. (71.5) 

Here gi and gf denote the quantities 

g i = ( 2 * i + l ) (2J«+1), 1 

# = (2*v+l) (2*H-l ) , J 

which give the number of possible spin orientations of the initial 
pair or the final pair of particles; they are called the spin statistical 
weights of the states ι and / . 

P R O B L E M S 1 

PROBLEM 1. Find the relation between the cross-sections σ„ for the photoelectric 
effect (ionisation of an atom with absorption of a photon Λω) and σ„ for radiative 
recombination (capture of a free electron by an ion to form a neutral atom with 
simultaneous emission of a photon). 

t In these problems, we make use of certain concepts, relating to the photon, 
that will be explained in the next chapter. 

tions of p / 5 summed over directions of the spins s^, s 2 / of the final 
particles, and averaged over the directions of the momentum p / and 
spins S 1 i ? s 2 l of the initial particles. Let this cross-section be denoted 
by JTfi\ 

(71.4) 
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SOLUTION. The states i a n d / i n ( 7 1 . 5 ) are in this case the states of the ion+ 
+electron and atom+photon systems. The required relation is 

= 2 ( 2 / e + l ) ( t o / c ) 2 a J e , 

where Jt and Ja are the angular momenta of the ion and the atom, ρ — mv is the 
momentum of the electron incident on the ion at rest, Ζίω/c is the photon momen-
tum, and the factor 2 is the statistical weight of the photon (two directions of pola-
risation). 

PROBLEM 2. Find the relation between the cross-sections for photodisintegra-
tion of a deuteron and radiative capture of a proton by a neutron. 

SOLUTION. The spin statistical weight of the neutron+proton system is 2 x 2 = 
= 4 ; the statistical weight of the deuteron (in the ground state with S = 1 ) + 
+photon system is 3 x 2 = 6 . Hence 4p2o\c = 6(Ηω/ό)2σ^9 where ρ is the momen-
tum of the relative motion of the colliding proton and neutron. This momentum 
is related to the deuteron binding energy / and the energy hu> of the γ quantum 
emitted in radiative capture by the law of conservation of energy: I+p?/M = λω 
(the reduced mass is \ M, where Μ is the nucleon mass). The final result is 

2 M c 2 ( t o - 1)σ^ = 3(hco)2a;d . 

§72. Elastic scattering in the presence of inelastic processes 

The existence of inelastic channels has a certain effect on the proper-
ties of elastic scattering also. 

The wave function ψ describing the process of elastic scattering 
consists of an incident plane wave and an outgoing spherical wave. 
It can also be represented as the sum of ingoing and outgoing waves, 
as in §62, these being "partial" waves (i.e. corresponding to definite 
values of the orbital angular momentum /). In (62.7), however, the 
amplitudes of each pair of ingoing and outgoing partial waves were 
equal, the coefficients of e~ikr and eikr in the brackets being both of 
modulus unity. In purely elastic scattering this corresponds to the 
physical significance of the problem, but when there are inelastic 
channels the amplitudes of the outgoing waves must be less than 
those of the ingoing waves. The asymptotic expression for ψ will 
therefore be given by 

(2/+ l)P/(cos0)[(- \)le~ikr-Sieikrl (72.1) 



§72 Elastic scattering in the presence of inelastic processes 251 

Each term in the sums (72.3) and (72.4) is the partial cross-section 
for elastic or inelastic scattering of particles with orbital angular 
momentum /. The value St = 1 corresponds to the complete absence 
of scattering (with a given /). The case St = 0 corresponds to total 
"absorption" of particles with a given / (the outgoing partial wave 
with this / then does not appear in (72.1)); the cross-sections for elastic 
and inelastic scattering are equal. Although elastic scattering can 
occur without inelastic scattering (when \St\ = 1), the opposite situa-
tion is impossible: the presence of inelastic scattering necessarily 
implies the simultaneous presence of elastic scattering. 

the coefficients which replace the exp (2/δ;) of (62.7) being complex 
quantities .S/? with moduli less than unity. The elastic scattering 
amplitude is given correspondingly by an expression different from 
(62.8): 

(72.2) (2 /+l ) (S/ - l )P / (cos 0). 

For the total elastic scattering cross-section ae we have, instead of 
(62.9), the formula 

(2 /+1) | 1-5/1». (72.3) 

The total inelastic scattering cross-section or reaction cross-section 
ar for all possible channels can also be expressed in terms of the St. 
To do so, we need only note that for each value of / the intensity of 
the outgoing wave is reduced in the ratio 157|

2 in comparison with that 
of the ingoing wave. This reduction must be ascribed entirely to 
inelastic scattering. It is therefore clear that 

(72.4) ( 2 / + l ) ( l - | S l | « ) s 

and the total cross-section is 

(2 /+ l ) (2-S / -S /*) . (72.5) 



Comparing this with (72.5), we find the following relation between 
the imaginary part of the amplitude of elastic scattering through zero 
angle and the total cross-section for scattering in all channels: 

im /(0) = kat/4n. 

This is called the optical theorem for scattering. 

§73. Inelastic scattering of slow particles 

The derivation of the limiting law of elastic scattering at low energies 
given in §65 can easily be generalised to the case where inelastic proces-
ses are involved. 

As before, the .y-wave scattering (with / = 0) is the most important 
at low energies. According to the results of §65, the quantity S0 = 
exp (2/<50) for small k is 

So « l+2id0 = 1 + 2/A0, (73.1) 

where β = c2/ci is a real constant (see (65.6)). The quantities c± and c 2 

are real because they are coefficients in the solution ψ of a real equation 
(Schrodinger's equation) with real boundary conditions (the asympto-
tic form of the stationary wave as r © o ) . The properties of the wave 
function ψ when inelastic processes are present differ only in that the 
condition imposed on ψ at infinity becomes complex: the asymptotic 
expression (72.1) with different amplitudes of the ingoing and out-
going waves does not reduce to a real stationary wave. The constant 
β therefore becomes complex also: β = β'+ίβ". The modulus \So\ is 
no longer equal to unity; the condition \S0\ < 1 means that the imagi-
nary part of β must be negative {β" < 0). 

252 Inelastic Collisions §73 

When 0 — 0, the elastic scattering amplitude (72.2) tends to the 
value 
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Retaining only the first term in (72.3) and (72.4), and substituting 
(73.1), we find the cross-sections for elastic and inelastic scattering: 

Thus the elastic scattering cross-section is again independent of veloc-
ity, but the inelastic cross-section is inversely proportional to the part-
icle velocity—the 1/t? law (H. A. Bethe 1935). Consequently, as the 
velocity diminishes, inelastic processes become more and more im-
portant in comparison with elastic scattering. 

The 1 jv law can be derived in another less rigorous but more easily 
visualised manner. Let us suppose that the probability that a reaction 
will occur in a collision is proportional to the squared modulus of the 
wave function of the incident wave at r = 0. Physically, this statement 
expresses the fact that, for example, a slow neutron colliding with a 
nucleus can bring about a reaction only if it "penetrates" into the 
nucleus. The reaction cross-section is found by dividing |^inC(0)| 2 by 
the incident current density (or, equivalently, by taking y)inc as normal-
ised to unit current). For a plane wave normalised to unit current we 
have I Vind 2 ~ *M which is the required result. 

In this argument it is assumed that the value of ^ . ( 0 ) can be cal-
culated from the wave function (plane wave) unperturbed by the field. 
For this to be true, and hence for the 1 \v law to be valid, it is necessary 
that the field U(f) acting on the incident particle should decrease 
sufficiently rapidly with increasing distanced In particular, the l/v 
law is not valid for reactions between charged particles interacting 
according to Coulomb's law. 

§74. Inelastic collisions between fast particles and atoms 

When a fast particle collides with an atom, various inelastic pro-
cesses (excitation or ionisation of the atom) can occur, as well as 
elastic scattering. These processes can be considered in the Born ap-

t It can be shown that U must decrease more rapidly than 1/r2. 

ae =4π\β\\ 

σ, = Απ \β" \/k. 

(73.2) 

(73.3) 
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proximation, as has been done in §70 for elastic scattering of fast 
electrons. Here it is assumed that the velocity of the fast particle is 
large in comparison with those of the atomic electrons. 

As already mentioned in §70, when an electron collides with an 
atom, the centre-of-mass system of coordinates may be regarded as 
coincident with the laboratory system, in which the atom is at rest. 
Let ρ and p' again be the initial and final momenta of the electron, 
and m its mass. We also define the vector hq = p' —p, representing 
the momentum transfer from the electron to the atom. The quantity 
q plays an important role in the process, and largely determines the 
nature of the collision. We shall consider two limiting cases, those of 
collisions where the momentum transfer is either large or small in 
comparison with h/a9 where a represents the dimensions of the atom. 

The inequality qa ^> 1 signifies that the momentum given to the 
atom is large compared with the original momentum of the atomic 
electrons. It is physically evident that in this case the atomic electrons 
may be regarded as free, and the collision of a fast electron with the 
atom may be regarded as an elastic collision with one of the atomic 
electrons, originally at rest. The cross-section for scattering by each 
of the Ζ electrons is given by Rutherford's formula; if the incident 
electron and the atomic electron acquire velocities of comparable 
magnitude, exchange effects become important, and the cross-section 
is determined by formula (69.7). 

Let us now consider the opposite case of small momentum transfer 
(qa « : 1). This means that the electron is deflected through a very 
small angle, and the energy transferred to the atom is small in com-
parison with its original energy. These properties enable us to take 
ρ ^ p'\ then the vector q is simply the result of rotating ρ without 
changing its magnitude, and when the scattering angle # is small we 
have 

hq % p». (74.1) 

This expression becomes invalid only for very small angles: in the 
limit # 0, q tends to the value q^ = (p—p')/h, which depends on 
the small difference p—p'. The condition of energy conservation in 



the collision gives 

where En—E0 is the excitation energy of the atom when it goes from 
the ground level to the nth level, and ν is the velocity of the incident 
electron. Hence the minimum value of the momentum transfer is 

«?min = (En-Eo)lv. (74.2) 

After this simplification, the only difference between the process 
under consideration and elastic scattering is that the initial and final 
states of the atom are not the same. The cross-section is therefore 
given by the same formula (70.1) , except that ψ0 and ipl in the integral 
become different wave functions ψ0 and ψ*: 

(74.3) 

where r and r a are the radius vectors of the incident particle and the 
atomic electrons, and the origin is at the nucleus. 

For inelastic processes, when (74.4) is substituted in (74.3) , the term 
containing the interaction with the nucleus, Ze2/r, disappears: the 
integration over r in this term separates in the form J ψ* ψ0 dr, which 
is zero because ψ0 and ψη are orthogonal. In the other terms, the in-
tegration over V is carried out by means of the formula 

(74.5) 

(to derive which we need only note that the substitution r = r e +r' re-
duces the integral to the form 
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The energy U includes the interaction of the incident electron with 
the nucleus of the atom and with all the Ζ atomic electrons: 

(74.4) 



t Here it is, of course, assumed that the matrix element does not vanish. If it 
does, the expansion (74.7) has to be continued to higher-order terms. 

256 Inelastic Collisions §74 

where the matrix element is taken with respect to the atomic wave 
functions: 

(74.6) 

We can now make use of the fact that q is small. The variables ra in 
the integral (74.6) have values lying in a volume with linear dimen-
sions ~ a. Hence, when qa « : 1, the quantities q.ra are small through-
out this region, and we can put 

% l - / q . r a = l-iqxa (74.7) 

(taking the direction of the vector q as the x-axis). Then 

where dx = £ exa is the Cartesian component of the dipole moment 
of the atom (the term unity disappears, since ψ0 and ψη are orthogonal). 
Putting also 

do' = 2π sin % d# % 2αϋ άϋ = 2n(hlmvfq dq9 

we get for the cross-section of the process 

dan = Znielhvf | (dx)n01
2 dq/q. (74.8) 

Thus the cross-section is determined by the squared matrix element 
of the dipole moment of the atom.1^ 

and the Fourier component of 1/r is given by (68.6)). The result is 



C H A P T E R 11 

P H O T O N S 

§75. The uncertainty principle in the relativistic case 

The quantum theory described in Part I is essentially non-relativistic 
throughout, and is not applicable to phenomena involving motion 
at velocities comparable with that of light. At first sight, one might 
expect that the change to a relativistic theory is possible by a fairly 
direct generalisation of the formalism of non-relativistic quantum 
mechanics. But further consideration shows that this is not so. 

We saw in Part I that quantum mechanics greatly restricts the 
possibility that an electron1" simultaneously possesses values of differ-
ent dynamical variables. For example, the uncertainties Aq and Ap in 
simultaneously existing values of the coordinate and the momentum 
are related by the expression AqAp ~ h\ the greater the accuracy with 
which one of these quantities is measured, the less the accuracy with 
which the other can be measured at the same time. 

It is important to note, however, that any of the dynamical variables 
of the electron can individually be measured with arbitrarily high 
accuracy, and in an arbitrarily short period of time. This fact is of 
fundamental importance throughout non-relativistic quantum mech-
anics. It is the only justification for using the concept of the wave 
function y(q\ the square of whose modulus gives the probability of 
finding a particular value of the electron coordinate as the result of 
a measurement made at a given instant. The concept of such a prob-

t As in §1, we shall, for brevity, speak of an "electron", meaning any 
quantum system. 

259 
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ability clearly requires that the coordinate can in principle be measured 
with any specified accuracy and rapidity, since otherwise this concept 
would be purposeless and devoid of physical significance. 

The existence of a limiting velocity (the velocity of light, denoted 
by c) leads to new fundamental limitations on the possible measure-
ments of various physical quantities (L. D. Landau and R. E. Peierls 
1930). 

In§37 the following relationship has been derived: 

relating the uncertainty Ap in the measurement of the electron mo-
mentum and the duration At of the measurement process itself; ν and 
v' are the velocities of the electron before and after the measurement. 
From this relationship it follows that a momentum measurement of 
high accuracy made during a short time (i.e. with Ap and At both 
small) can occur only if there is a large change in the velocity as a 
result of the measurement process itself. In the non-relativistic theory, 
this showed that the measurement of momentum cannot be repeated 
at short intervals of time, but it did not all diminish the possibility, 
in principle, of making a single measurement of the momentum with 
arbitrarily high accuracy, since the difference v' — v could take any 
value, no matter how large. 

The existence of a limiting velocity, however, radically alters the 
situation. The difference v' — v, like the velocities themselves, cannot 
now exceed c (or rather 2c). Replacing v' — v'm (75.1) by c, we obtain 

which determines the highest accuracy theoretically attainable when 
the momentum is measured by a process occupying a given time 
In the relativistic theory, therefore, it is in principle impossible to 
make an arbitrarily accurate and rapid measurement of the momen-
tum. An exact measurement (Ap 0) is possible only in the limit as 
the duration of the measurement tends to infinity. 

Equally fundamental changes occur in regard to the measurability 
of the coordinate. In the relativistic theory, the coordinate cannot be 

(v' — v)ApAt ~ h, (75.1) 

ΔρΑί ~ h/c, (75.2) 
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measured with an accuracy better than a certain limit. The concept 
of localising the electron is thereby further restricted in its physical 
significance. 

In the mathematical formalism of the theory, this situation is shown 
by the fact that an accurate measurement of the coordinate is in-
compatible with the assertion that the energy of a free particle is 
positive. It will be seen later that the complete set of eigenfunctions 
of the relativistic wave equation of a free particle includes, as well as 
solutions having the "correct" time dependence, also solutions having 
a "negative frequency". These functions will in general appear in the 
expansion of the wave packet corresponding to an electron localised 
in a small region of space. 

It will be shown that the wave functions having a "negative fre-
quency" correspond to the existence of antiparticles (positrons). The 
appearance of these functions in the expansion of the wave packet 
expresses the (in general) inevitable production of electron-positron 
pairs in the process of measuring the coordinates of an electron. This 
formation of new particles in a way which cannot be detected by the 
process itself clearly renders meaningless the measurement of the 
electron coordinates. 

In the rest frame of the electron, the least possible error in the 
measurement of its coordinates is 

This value (which purely dimensional arguments show to be the only 
possible one) corresponds to a momentum uncertainty Ap ~ rac, which 
in turn corresponds to the threshold energy for pair production. 

In a frame of reference in which the electron is moving with energy 
ε, (75.3) becomes 

In particular, in the limiting ultra-relativistic case the energy is related 
to the momentum by ε = cp, and 

Aq ~ hjmc. (75.3) 

Δ«7 ~ hc/ε. (75.4) 

Aq ~ h/p, (75.5) 
18 



262 Photons §75 

i.e. the error Aq is the same as the de Broglie wavelength of the par-
ticle. 

It is clear from the foregoing that, in a consistent relativistic quan-
tum mechanics, the coordinates of particles cannot act as dynamical 
variables, since these must by their nature have a precise significance. 
Nor can the particle momentum retain its former meaning. Since an 
accurate measurement of the momentum requires a long interval of 
time, there is no possibility of following its change in the process. 

Having regard to the discussion at the beginning of this section, we 
reach the conclusion that the entire formalism of non-relativistic 
quantum mechanics becomes insufficient in the relativistic case. The 
wave functions \p(q\ in their original sense as the carriers of unobserv-
able information, cannot appear in the formalism of a consistent 
relativistic theory. 

The momentum can figure in a consistent theory only for free par-
ticles; for these it is conserved, and can therefore be measured with 
any desired accuracy. This indicates that the theory will not consider 
the time dependence of particle interaction processes. The only observ-
able quantities are the properties (momenta, polarisations) of free 
particles: the initial particles which come into interaction, and the 
final particles which result from the process. 

A typical problem as formulated in relativistic quantum theory is 
to determine the probability amplitudes of transitions between spe-
cified initial and final states of a system of particles. The set of such 
amplitudes between all possible states constitutes the scattering matrix 
or S-matrix. This matrix will embody all the information about par-
ticle interaction processes that has an observable physical meaning 
(W. Heisenberg 1938). 

In such a theory, moreover, the concepts of "elementary" and 
"composite" particles lose their earlier significance; the problem of 
"what consists of what" cannot be formulated without considering 
the process of interaction between particles, and if this is not done the 
whole problem becomes meaningless. All particles which occur as 
initial or final particles in any physical collision phenomenon must 
appear in the theory on an equal footing. In this sense the difference 
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8* 

between those particles usually said to be "composite" and those 
said to be "elementary" is only a quantitative one, and amounts to 
the value of the mass defect with respect to decay into specified "com-
ponent parts". For example, the statement that the deuteron is com-
posite (its binding energy with respect to disintegration into a proton 
and a neutron being fairly small) differs only quantitatively from the 
statement that the neutron "consists of" a proton and a pion. 

There is as yet no logically consistent and complete relativistic 
quantum theory. We shall see that the existing theory introduces new 
physical features into the nature of the description of particle states, 
which acquires some of the features of field theory. The theory is, 
however, largely constructed on the pattern of ordinary quantum 
mechanics and makes use of the latter V concepts. This structure of 
the theory has yielded good results in quantum electrodynamics. The 
lack of complete logical consistency in this theory is shown by the 
occurrence of divergent expressions when the mathematical formalism 
is directly applied, although there are quite well-defined ways of elim-
inating these divergences. Nevertheless, such methods remain, to a 
considerable extent, semiempirical rules, and our confidence in the 
correctness of the results is ultimately based only on their excellent 
agreement with experiment, not on the internal consistency or logical 
ordering of the fundamental principles of the theory. 

A quite different situation occurs in the theory of effects depending 
on the strong interactions of particles (nuclear forces). Here, attempts 
to construct a theory by similar methods have led to no systematic 
results bearing on physical reality. The construction of a complete 
theory embracing strong interactions will probably call for the applica-
tion of fundamentally new physical ideas. 
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where the coefficient c k are functions of the time such that 

c k ~ e~ioit, ω = |k | , (76.2) 

and each is orthogonal to the corresponding wave vector: c k .k = O.t 
The summation in (76.1) is taken over an infinite but discrete set of 
adjacent values of the vector (i.e. of its three components kx, ky, kz). 
The change from summation to integration over a continuous distri-
bution may be made by means of the expression 

Ω dkx dky dkzl(2nf (76.3) 

for the number of possible values of k belonging to the volume element 
in k-space. 

t From here onwards in Chapters 11-16, except where otherwise specified, we 
shall use relativistic units, in which the velocity of light c and Planck's constant h 
are taken as unity; this considerably simplifies the formulae. In these units, energy, 
momentum, and mass have the same dimensions—those of reciprocal length. The 
square of the unit charge is equal to the value of the dimensionless (in ordinary 
units) constant e2/hc, or 1/137. 

t The definition of the coefficients c k in (76.1) differs from that of the a f e in 
Mechanics and Electrodynamics (78.1) by a factor ^(ωΩβπ). The convenience of 
this definition in making the change to the quantum theory will be explained 
below. 

(76.1) 

§76. Quantisation of the free electromagnetic field1 

A natural means of transition from the classical to the quantum 
description of the electromagnetic field consists in the classical expan-
sion of the field in terms of oscillators. The basis of this procedure is as 
follows (cf. Mechanics and Electrodynamics, §78). 

We describe a free electromagnetic field (or electromagnetic waves) 
by potentials taken in a gauge such that the scalar potential is zero, 
leaving only the vector potential A. Considering the field in some large 
but finite volume Ω, we can expand it in travelling plane waves, and the 
potential is then represented by a series 
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If the vectors c k are specified, the field in the volume considered is 
completely determined. Thus these quantities may be regarded as a 
discrete set of classical "field variables". In order to explain the transi-
tion to the quantum theory, however, a further transformation of these 
variables is needed, whereby the field equations take a form analogous 
to the canonical equations (Hamilton's equations) of classical mecha-
nics. The canonical field variables are defined as the real quantities 

(76.4) 

Thus the Hamiltonian is the sum of independent terms, each of 
which contains only one pair of the quantities P k ( r , Qk<r. Each such term 
corresponds to a travelling wave with a definite wave vector and pola-
risation, and has the form of the Hamiltonian for a one-dimensional 
harmonic oscillator. 

This classical description of the field makes the manner of transition 
to the quantum theory obvious. We have now to use the canonical 
variables (generalised coordinates Qk(r and generalised momenta P k ( r ) 
as operators, with the usual commutation rules for coordinates and 
momenta: 

Λ σ & σ - & σ Λ σ = ~ i\ (76.6) 

The Hamiltonian (i.e. the energy) of the field is given in terms of 
these variables bv 

Each of the vectors P k and Q k is perpendicular to the wave vector k, 
and therefore has two independent components. The direction of these 
vectors determines the direction of polarisation of the corresponding 
wave. Denoting the components of the vectors P k , Q k (in the plane 
perpendicular to k) by P k ( r , Qk<r (a = 1,2), we can write the Hamiltonian 
as 

(76.5) 
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where the Nkv are integers. 
The classical expression for the field momentumfis 

Ρ = Σ η Ή " , 
k, σ 

where η = k/k; see Mechanics and Electrodynamics (78.12). The cor-
responding operator is found by replacing Hktr by Hk(T, and its eigen-
values are therefore 

P = (76.9) 

The further discussion of formulae (76.8) and (76.9) will be left 
until §77; here we shall write out the matrix elements of the quantities 
<2k<r, which can be done at once by means of the known formulae (25.4) 
for the matrix elements of the coordinate of an oscillator. The non-zero 
matrix elements are 

(Nktr I Qkcri M r - 1 ) = (Nk<r-1 IQkrrl Ny,) = V(M«r/2co). (76.10) 

The matrix elements of the quantities Pk<r = differ from those of 
Qk<T only by the factor ± ιω, according to the general rule (11.8): 

(Nk<r\Pk(r\Nk(r-l) = -(Nk<r-l \Pk<r\Nka) = ia>V(N*rl2n). 

operators with different values of k and a always commute. The field 
potential A is then likewise an operator. 

The Hamiltonian of the field is found by replacing the canonical 
variables in (76.5) by the corresponding operators: 

(76.7) 

The determination of the eigenvalues of this Hamiltonian involves 
no further calculation, since it is equivalent to the problem of the 
energy levels of linear oscillators, the solution of which we already know 
(§25). We can therefore immediately write down the field energy levels: 

(76.8) 
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As will be seen later, however, a more fundamental significance 

attaches not to the operators <2 k < r and Pk<r themselves but to linear 

combinations of them, given by 

(76.11) 

Here e ( < r ) denotes the unit vectors in the direction of polarisation of 
the oscillators; these vectors are perpendicular to the wave vectors k, 
and for every k there are two independent polarisations denoted by 
the superscript a = 1, 2. f 

The expression (76.14) corresponds to the usual representation of 
operators in non-relativistic quantum theory, which has been tacitly 
used throughout. In this Schrodinger representation, the operators of 
the various physical quantities do not themselves depend explicitly on 

t For linear polarisation, the unit vector e is real, and gives the direction of 
polarisation immediately (see Mechanics and Electrodynamics, §70). For circular 
(or, more generally, elliptical) polarisation the vector e is complex, with a definite 
ratio of the real and imaginary parts; here the description "unit vector" must be 
taken as meaning that e .e* = 1. 

which correspond to the definition of the coefficients ck<r in the classical 
expansion (76.1). The only non-zero matrix elements of these operators 
are 

( t f l o r - l |cUM»> = <Ahr | c£ | iV t o - l> = VM*- (76.12) 

Using the definition (76.11) and the rule (76.6), we can easily find the 
commutation rule for the operators cĵ J and ck(T\ 

CkrCka—CkaCk/r = 1. (76.13) 

Thus we obtain the electromagnetic field operator in the form 

(76.14) 
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the time. The variation of the system with time is described by the 
time dependence of the wave function. The formalism of quantum 
mechanics can also, however, be expressed in a slightly different but 
equivalent form, in which the explicit time dependence is transferred 
from the wave functions to the operators; this is called the Heisenberg 
representation of the operators. Such a formulation is especially con-
venient for the description of fields in relativistic quantum theory: the 
dependence of the operators on coordinates and time placed on an 
equal footing allows a clearer elucidation of the relativistic space-time 
invariance of the theory, whereas in the Schrodinger formulation the 
space coordinates and the time appear in a highly asymmetric manner. 

For the operator A , the change to the Heisenberg representation 
amounts to including a factor e~i<ot (or its conjugate) in each term of 
the sum (76.14), corresponding to the time dependence of the "sta-
tionary states of the field oscillators". The final expression for the 
operator A may be written 

Henceforward, in the discussion of either electromagnetic fields or 
particle fields, we shall use the Heisenberg representation of the field 
operators. 

We shall now further analyse the field quantisation formulae ob-
tained in §76. 

First of all, formula (76.8) for the field energy raises the following 
difficulty. The lowest energy level of the field corresponds to the case 
where the quantum numbers Nktr of all the oscillators are zero; this is 
called the electromagnetic field vacuum state. But, even in that state, 
each oscillator has a non-zero "zero-point energy" equal to \ω. Sum-
mation over an infinite number of oscillators then gives an infinite 

A(f, 0 = Σ (^Akr+CtarAko.), (76.15) 
ρ,σ 

where 

(76.16) 

§77. Photons 
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These formulae enable us to introduce the concept of radiation quanta 
or photons, whichis fundamental throughout quantum electrodynamics^ 
We may regard the free electromagnetic field as an ensemble of part-
icles each with energy hco and momentum hk = n/fco/c. The rela-
tionship between the energy and momentum is as it should be in 
relativistic mechanics for particles having zero rest-mass and moving 
with the velocity of light. The numbers Nk(r now represent the numbers 
of photons having given momentum k and polarisation e (0P ). The 
polarisation of the photon is analogous to the spin of other particles; 
the exact properties of the photon in this respect will be discussed in 
§78 below. 

It is easily seen that the whole of the mathematical formalism dev-
eloped in §76 is fully in accordance with the representation of the 
free electromagnetic field as an ensemble of photons; it is just the 
second quantisation formalism, applied to the system of photons. In 
this treatment (see §47), the independent variables are the occupation 
numbers of the states (in the present case, the numbers Nk(r\ and the 
operators act on functions of these numbers. The particle "annihi-
lation" and "creation" operators are of basic importance; they respec-
tively decrease and increase by one the occupation numbers. The 
ck<r and ck(r are operators of this kind: ck<r annihilates a photon in the 
state k, a (and has matrix elements only for the transitions Nk<r — 
Nk(r—l; cf. (76.12)); ck(T creates a photon in that state (its matrix 
elements being non-zero only for transitions Nk(r Nk(r+1). 

t This concept is originally due to A. Einstein (1905), in connection with the 
theory of the photoelectric effect. 

result. Thus we meet with one of the "divergences" which are due to 
the fact that the present theory is not logically complete and consis-
tent. 

So long as only the field energy eigenvalues are under discussion, we 
can remove this difficulty by simply striking out the zero-point oscilla-
tion energy, i.e. by writing the field energy and momentum (in ordinary 
units) as 

(77.i; 
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The plane waves (76.16) which appear in the operator (76.15) as 
coefficients of the photon annihilation operators may be treated as the 
wave functions of photons having given momenta k and polarisa-
tions e ( c r ), normalised to one photon in the volume Ω. This corresponds 
to an expansion (47.22) of the ψ-operator in terms of the wave func-
tions of stationary states of a particle in the non-relativistic second 
quantisation formalism; however, unlike the latter, the expansion 
(76.15) includes both particle annihilation and particle creation oper-
ators. The meaning of this difference is explained in Chapter 13. 

Here it should be emphasised once more that the "wave function" 
of the photon cannot be regarded as the probability amplitude of its 
spatial localisation, in contrast to the fundamental significance of the 
wave function in non-relativistic quantum mechanics. This is especially 
clear in the case of the photon, which is always ultra-relativistic, so 
that the minimum error in its coordinates is Aq ~ l/k ~ A, by (75.5). 
This means that one can speak of the coordinates of the photon only 
when the characteristic dimensions of the problem are large compared 
with the wavelength. This is just the "classical" limiting case corre-
sponding to geometrical optics, in which one can regard radiation as 
being propagated along definite paths or rays. In the quantum case, 
however, when the wavelength cannot be regarded as small, the con-
cept of the coordinates of the photon becomes meaningless. 

The commutation rule (76.13) for the photon creation and annihi-
lation operators corresponds to the case of particles that obey Bose 
statistics; cf. (47.11). Photons are therefore bosons. In accordance 
with the properties of this statistics, there can be any number of photons 
simultaneously present in any given state. 

The description of the field as an ensemble of photons is the only 
one that is fully adequate to the physical significance of the free 
electromagnetic field in quantum theory. It replaces the classical de-
scription based on field potentials (and field strengths). These appear 
as second quantisation operators in the mathematical treatment of 
the photon picture. 

The properties of a quantum system become almost classical when 
the quantum numbers defining the stationary states of the system are 
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large (§27). For a free electromagnetic field (in a given volume), this 
means that the quantum numbers of the oscillators, i.e. the photon 
numbers Λ^ , must be large. In this sense the fact that photons obey 
Bose statistics is of great importance. In the mathematical formalism 
of the theory, the connection of Bose statistics with the properties of 
the classical field is shown by the commutation rules for the operators 
4 σ > £far When the JVk0. are large, and the matrix elements of these 
operators are also large, the right-hand side of the commutation rela-
tion (76.13) can be neglected, and we then have c^Jc^ = c^c^, i.e. 
these operators become the commuting classical quantities ck(r, c k < r 

which define the classical field potentials. 

§78. The angular momentum and parity of the photon 

The photon, like any other particle, can possess a certain angular 
momentum, but the properties of this angular momentum differ some-
what from those for ordinary particles. To see the reason for this differ-
ence, let us first recall the relationship between the properties of the 
wave function of a particle and the angular momentum of the particle, 
in the mathematical formalism of quantum mechanics. 

The angular momentum j of a particle consists of its orbital angular 
momentum 1 and its intrinsic angular momentum or spin s. The wave 
function of a particle having spin s is a symmetrical spinor of rank 
2s, i.e. is a set of 2s-\-1 components which are transformed into defi-
nite combinations of one another when the coordinate axes are ro-
tated (§41). The orbital angular momentum is related to the way in 
which the wave functions depend on the coordinates: states with 
orbital angular momentum / correspond to wave functions whose 
components are linear combinations of the spherical harmonic func-
tions of order /. 

The vector A plays the part of the wave function of the photon. 
A vector is equivalent to a spinor of rank two, and in this sense the 
photon may be assigned spin 1. Since this is integral, it follows in turn 
that the total angular momentum of the photon also can take only 
integral values: j = 1, 2, 3, . . . . There is no value j = 0 for the pho-
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ton: the wave function of a state with zero angular momentum must 
be spherically symmetrical, and this certainly cannot occur for a 
transverse wave. 

Whereas the total angular momentum of the photon has an entirely 
precise significance, the photon spin in only conventional: one cannot 
consistently distinguish the spin and the orbital angular momentum 
of the photon as constituent parts of its total angular momentum. The 
reason is that it would then be necessary for the "spin" and "coordin-
ate" properties of the wave functions to be independent: the coordin-
ate dependence of the components of a spinor (in this case a vector) 
cannot be limited by any extra conditions; but the vector wave func-
tion A of the photon is subject to the further condition of transversal-
ity, so that the coordinate dependence cannot be simultaneously and 
arbitrarily specified for all its components. The definition of the spin 
as the angular momentum of a particle at rest is also inapplicable to 
the photon, since there is no rest frame for the photon, which moves 
at the speed of light. 

The state of the photon, like that of any particle, can also be de-
scribed by its parity, which refers to the behaviour of the wave function 
under inversion of the coordinates. The state is said to be even if the 
vector wave function A(r) is unchanged by inversion, and odd if A(r) 
changes sign.1^ There is an accepted terminology for the various states 
of a photon that have definite angular momenta and parities: a photon 
in a state with angular momentum j and parity (— l) 7 is called an 
electric 2j-pole (or Ej) photon; one with parity (—1) 7 + 1 is called a 
magnetic 2j-pole (or Mj) photonX The angular momentum and parity 
of a particle are frequently denoted by a single symbol in which a 

t The effect of inversion on a scalar function <fi(r) is to change the sign of the 
argument: Ρφ(τ) — φ ( - r). When the inversion operator acts on a vector function 
A(r), it must also be borne in mind that the reversal of the direction of the coor-
dinate axes also changes the sign of each component of the (polar) vector. Thus 
the effect of the inversion operation is shown by PA(r) = — A(— r). Hence, for 
example, in an even state we must have A ( - r) = - A(r) if PA(r) = A(r). 

t These names are in accordance with the terminology of radiation theory: the 
emission of electric and magnetic photons is respectively caused by the electric 
and magnetic multipole moments of a system of charges (see §98). 
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number shows the value of j and a superscript + or — denotes the 
parity Ρ = + 1 or — 1. Thus electric photons correspond to states 
1~, 2 + , 3" , 4 + , etc., and magnetic photons to 1 + , 2~, 3 + , 4~, etc. In 
particular, an electric dipole photon corresponds to a Γ state and 
a magnetic dipole photon to a 1 + state. 

The state of a photon with a definite value of j is a spherical wave 
in which there is no distinctive direction of motion. On the other hand, 
if a photon has a definite direction of motion (i.e. has a definite mo-
mentum vector k), then it has no definite value of j . A photon with 
a definite direction of k can, however, also have a definite value of the 
angular momentum component in that direction; this component is 
called the helicity and denoted by λ.1" 

The conservation of helicity, like that of any component of the 
angular momentum, is due to certain symmetry properties of space 
in relation to a free particle. The momentum k distinguishes a parti-
cular direction in space. The existence of this direction removes the 
complete symmetry with respect to arbitrary rotations of the coordi-
nate axes (and so the angular momentum vector is no longer conserved). 
There is still, however, axial symmetry with respect to rotations about 
the selected axis (the direction of k). The conservation of helicity 
expresses this symmetry. 

By the definition of the orbital angular momentum operator 1 = r χ ρ, 
the operator of the component of this angular momentum in the direc-
tion of the momentum is identically zero, as are the eigenvalues of 
this component. The helicity is therefore equal to the component of 
the particle spin in its direction of motion. For an ordinary particle 
with spin 1, the helicity may therefore have the values 0 and ± 1 . 
For the photon, as we shall now show, only the values λ = ± 1 are 
possible; this again shows that the concept of photon spin is a purely 
conventional one. 

It is easily seen that the states of the photon having definite helicities 
are the same as its states of circular polarisation. Let | , η, ζ be coordi-

t This is to be distinguished from m, the component of the angular momentum 
in a fixed direction in space (the z-axis). 
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nates with the £-axis in the direction of the photon momentum 
(whereas the position of the z-axis is unaffected by the motion of the 
particle). Let us consider, for instance, a photon state with helicity 
λ = + 1. According to formulae (41.9), which give the relation be-
tween the components of a vector wave function (of a particle with 
spin 1) and the components of a spinor of rank two, such a state 
corresponds to a wave function A whose components are related by 
Αη = ΐΑξ, Αζ = 0; for in that case the only non-zero component of 
the spinor is ψ11, which corresponds to the value + 1 for the C-compo-
nent of the spin. Similarly, a wave function with components Αη = 
— ΙΑξ, Αζ = 0 corresponds to λ = — 1 . . Such relationships are satis-
fied not only by the vector A but also by the polarisation vector e, 
which appears as a factor in (76.16). The values en = ±ie^ however, 
correspond to circular polarisation (see Mechanics and Electrodyna-
mics, §70). 

The impossibility of the value λ = 0 is evident from the fact that 
this would have to correspond to a wave function with components 
Αξ = An = 0, Αζ 5* 0, which, according to (41.9), is equivalent to 
the spinor component ψ12; but this is excluded by the requirement that 
the vector A is transverse to k. 
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D I R A C ' S E Q U A T I O N 

§79. The Klein-Fock equation 

We shall begin the discussion of the relativistic quantum theory of 
particles by considering the properties of wave functions describing 
particles and by constructing the wave equation that is satisfied by 
these functions. In the non-relativistic theory, the wave functions of 
particles with different spins are spinors of different ranks, and the 
wave functions of free particles all satisfy the same equation, namely 
Schrodinger's equation for free motion. In the relativistic theory, 
however, as we shall see, the form of the wave equation of free motion 
depends essentially on the particle spin. 

The simplest case is, of course, that of particles with spin zero. 
In the non-relativistic theory, they are described by scalar wave func-
tions. In the relativistic theory, the three-dimensional scalar becomes 
a four-dimensional scalar that is invariant not only under transforma-
tions of the spatial coordinates but also under Lorentz transformations. 

In relativistic mechanics, the energy ε of a particle and its momentum 
ρ form a four-vector ρμ = (ε, p). t Accordingly, the operators corre-
sponding to these quantities also form a four-vector p*. The operator 
ρ = — /V corresponds to the three-dimensional momentum p, and 
the operator id/dt of differentiation with respect to time corresponds 
to the energy (the Hamiltonian) in the wave equation; cf. (8.1). 

t In Chapters 12-16 we shall denote by ε the relativistic energy of an individual 
particle, including the rest energy. 

275 
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(O. Klein and V. A. Fock 1926). 
For a relativistic particle with spin zero, there is no Hamiltonian in 

the sense defined in non-relativistic theory: equation (79.4) is of the 
second order with respect to time, whereas the Hamiltonian β would 
have to determine the first derivative of the wave function according 
to 18373* = ΗΨ. 

For a spin-zero particle, the probability density of its various 
positions in space certainly could not be determined by the squared 
modulus \Ψ\2, even formally (quite apart from the general physical 
considerations given in §75, which prevent the wave function from 
being regarded as carrying information about the spatial localisation 
of the particle). The reason is that in the relativistic theory the particle 
distribution and current densities form a four-vector (cf. the discussion 
of the current density vector in Mechanics and Electrodynamics, §54). 
The particle density is the time component of this four-vector, and 
not a scalar. It therefore cannot be determined by a scalar quantity such 
as the squared modulus of a scalar function. 

For reasons to be explained later (§92), the description of particles 
by means of the scalar wave equation (79.4) has only a very restricted 

Thus the four-momentum operator is 

pf = (id/dt, - i v ) , ρμ = (id/dt, iv) (79.1) 

or, in four-dimensional notation, 

p/A = idldx". (79.2) 

If the scalar operator /y>", the square of the four-vector p?9 acts 
on any wave function Ψ9 the square of the four-momentum is just a 
constant, the square of the mass m of the particle, and so the result 
is to multiply the wave function by m2: 

ρμρ*ψ = m2W, (79.3) 

which can be expanded as 

(79.4) 
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significance. We shall therefore not pause here to elucidate the mathe-
matical structure of the quantities which play the part of the particle 
current density and energy density four-vector. 

In non-relativistic quantum theory, a particle with spin s is described 
by a symmetrical spinor of rank 2s, i.e. a set of 2s-\-1 quantities that 
are transformed into particular combinations of one another when 
the coordinate axes are rotated. The law of this transformation repre-
sents the symmetry properties of the particles resulting from the iso-
tropy of space. 

In the relativistic theory, rotations of the space coordinates occur 
only as a special case of four-dimensional rotations (rotations of the 
four-dimensional space-time coordinates). The set of all possible 
transformations of this kind is called the Lorentz group. It includes 
not only the three-dimensional rotations, which leave the direction 
of the time axis unaltered, but also the ordinary Lorentz transforma-
tions, which are rotations in the xt, yt or zt plane (see Mechanics and 
Electrodynamics, §36). A general four-dimensional rotation is a Lorentz 
transformation together with a rotation of the space coordinates. 

To describe particles with spin in relativistic quantum theory, it is 
therefore necessary to develop the theory of four-dimensional spinors 
(four-spinors), which play the same part with respect to Lorentz-
group transformations as the ordinary (three-dimensional) spinors 
do with respect to the space-rotation group.1" 

A four-spinor of rank one: 

is a quantity with two components, which is transformed by any 

t That is, the four-spinors provide irreducible representations of the Lorentz 
group, just as the three-dimensional spinors provide irreducible representations 
of the rotation group. 

§80. Four-dimensional spinors 

(80.1) 

19 
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Lorentz-group transformation in accordance with formulae similar 
to (41.3): 

I 1 ' = α&+βξ*9 ψ = γξϊ+δξ*; (80.2) 

the complex coefficients α, β, γ9 δ are now definite functions of the 
angles of rotation of the four-dimensional coordinate axes (in general, 
there are six such angles, corresponding to rotations in the six coordi-
nate planes xy9 xz9 yz9 tx, ty, tz). Being components of the wave 
function of a particle with spin γ , I 1 and ξ2 correspond to the eigen-
values of the z-projection of the spin, which are + γ and —γ. 

For the same reason as with three-dimensional spinors, the coeffi-
cients in the transformation (80.2) are related by (41.5): 

αδ-γβ = 1. (80.3) 

This ensures the invariance of the bilinear antisymmetric combination 

of the components of any two spinors ξ and .5. As with three-dimen-
sional spinors, the expression (80.4) gives the rule for forming the 
scalar product of two spinors. 

There is a difference from the three-dimensional case, however, when 
complex-conjugate spinors are considered. In the theory of three-
dimensional spinors (§41), the law of transformation for the complex-
conjugate spinor is determined by the requirement that the sum 

ξψ*+ξψ*, (80.5) 

which gives the probability density of the localisation of the particle 
in space, is a scalar; this led to the relations (41.6) between the coeffi-
cients α, β, γ, δ. In the relativistic theory, the particle density is not a 
scalar; it is the time component of a four-vector, as already mentioned 
in §79. Consequently, the above requirement does not apply, and there 
are no conditions other than (80.3) to be imposed on the coefficients 
in the transformation (80.2). The four complex quantities related by 
the single condition (80.3) are equivalent to 8—2 = 6 real parameters, 
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The rule 
^ ~ L 2 * , Η 2 - - ! 1 * (80.7) 

relates the transformation laws for this spinor and for |*; the symbol 
~ here and in the rest of §80 denotes "is transformed as". 

As already mentioned, the Lorentz group includes, in particular, 
purely spatial rotations of the three-dimensional coordinates. In res-
pect of these transformations, four-spinors behave in the same way 
as three-dimensional spinors. The difference between dotted and un-
dotted spinors then disappears, of course, both being transformed 
in the same manner. (This is the reason for defining the dotted four-
spinors by the rule (80.7).) For the complex-conjugate three-dimen-
sional spinor is transformed, as we know (§41), according to £ x * ~ | 2 , 
ξ2* 1 1 ; comparison with (80.7) thus shows that for spatial rota-
tions 

The four-spinors of higher rank are defined as sets of quantities 
which are transformed as products of the components of a number 
of spinors of rank one. The indices of these spinors of higher rank 
may be partly dotted and partly undotted. For example, there exist 
three types of spinors of rank two : f 

t In §§80-82 the spinor indices, taking the values 1 and 2, will be denoted by the 
letters at the beginning of the Greek alphabet: α, β, y, . . . . 

19* 

in accordance with the number of parameters in the Lorentz-group 
transformations. 

Thus the transformation (80.2) and its complex conjugate are 
essentially different. This means that in the relativistic theory there 
are spinors of two types. In order to distinguish these, a special nota-
tion is used: the indices of a spinor which is transformed by the com-
plex-conjugate formulae to (80.2) are written with dots over them and 
are called dotted indices: 

η -- (80.6) 
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A spinor of rank two has 2 x 2 = 4 components. If both indices are 
dotted or both undotted, the spinor can be separated into symmetric 
and antisymmetric parts: - | < Γ ^ + ^ α ) and | ( Γ ^ - Ι ^ ) . The latter has 
only one component, - ( ξ 1 2 — I 2 1 ) , which is a scalar (cf. (80.4)). The 
symmetrical part is a set of three independent quantities ξ11,I22, and 
y (£ 1 2 +! 2 1 ) , which are transformed into combinations of one another 
by transformations of the Lorentz group. 

For a "mixed" spinor f0 ,̂ the order of the indices is arbitrary, since 
they correspond to different transformation laws. All four compo-
nents of such a spinor are transformed into combinations of one an-
other, and this number cannot be reduced by taking any linear com-
binations of the components. A four-vector also has four components, 
and these are likewise transformed into combinations of one another 
by Lorentz-group transformations. It is therefore clear that there 
must be some correspondence between the components of a mixed 
four-spinor of rank two and those of a four-vector. This correspond-
ence is expressed by the formulae 

ζ12 = α>+&, C 2 i = a*-a°, 

ζη = -a1+ia\ ζ 2 2 = αΜ-toP, 

where αμ = (α°, a) is a four-vector. The validity of these formulae 
can be proved as follows. 

As already noted, for spatial rotations there is no difference between 
dotted and undotted spinors, both behaving as three-dimensional 
spinors. Hence the set of three quantities 

p i = -a

1+ia\ C 2 2 = oM-w*, i ( C 3 2 + C 2 1 ) = Λ 3 

must behave as a three-dimensional symmetrical spinor of rank two, 
and the above formulae must be the same as the relation established 
in §41 between the components of such a spinor and those of a three-
dimensional vector. A comparison with formulae (41.9) shows that 
this condition is in fact satisfied. 

The antisymmetric combination f 1 2 _ £ 2 1 is transformed (under any 

Lorentz-group transformation) as the difference ξ^—^η1; according 

(80.10) 
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to the definition (80.7), this implies the correspondence 

£12_£2i ^ | 1 | 1 * + | 2 { 2 · β 

Such a sum must be the time component of a four-vector, as stated 
above in connection with (80.5). This condition too is satisfied: 
according to (80.10) we have 

In the exposition (§41) of three-dimensional spinor theory, we have 
not considered their behaviour under the operation of spatial inver-
sion, since in the non-relativistic theory this would not have led to 
any new physical results. Here we shall examine the point, however, 
in order to make clearer the subsequent analysis of the inversion pro-
perties of four-spinors. 

Inversion is a reversal of the direction of the spatial coordinate 
axes x,y, z. On repeating the inversion, we return to the original 
coordinates. For a spinor, however, a return to the original position 
can be regarded in two different ways, as a rotation through 0° or 
360°. These two definitions are not equivalent with respect to spinors, 

since ψ = ΓΑ changes sign on rotation through 360°. Thus two 

alternative views of the inversion of spinors are possible: a twofold 
inversion must either leave a spinor unaltered or change its sign. 
We shall choose the first of these, and thus suppose that 

The choice does not affect the physical results given below. 
Inversion of the coordinates changes the sign of polar vectors, but 

leaves axial vectors unchanged. The latter include angular momentum 
vectors, and in particular the spin vector. Thus the z-projection of the 
spin is also unchanged. Hence it follows that, under inversion, each 
of the components ψ\ ψ2 of a three-dimensional spinor, corresponding 
to a definite value of s2, can only be transformed into itself. According 

i ( £ 1 2 - £ 2 i ) = * ° . 

§81. Inversion of spinors 

^ = + 1. (81.1) 
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to the definition (81.1), this means that 

Ρψ =±ψ« (α = 1,2). (81.2) 

It must be emphasised, however, that the assignment of a particular 
parity (-f-1 or — 1) to a spinor has no absolute significance, since 
spinors change sign on rotation through 2π, and this can always 
be carried out simultaneously with inversion. The "relative parity" of 
two spinors ψ and φ, defined as the parity of the scalar ψ^—φΖψ1 

formed from them, has absolute significance, however; on rotation 
through 2π, all spinors change sign, and the indeterminacy therefore 
does not influence the parity (— 1 or -f-1) of this scalar. 

Let us now go on to discuss four-dimensional spinors. The require-
ment that only quantities belonging to the same value of sz should 
be transformed into combinations of one another remains valid, 
of course. But the transformation cannot be simply (81.2) (and a 
similar one for the dotted spinors); this can be shown, for example, 
as follows. In consequence of (81.2), the components of four-spinors 
of higher rank also would be transformed into combinations of one 
another. But this would contradict formulae (80.10): under inversion 
of the space coordinates, the components a\ a2, az of the (polar) 
vector a change sign, and a 0 remains unchanged; hence ζ12 and ζ21 

certainly cannot be transformed into combinations of themselves. 
Thus inversion must transform the components of the four-spinor 

| a into expressions involving other quantities. These can only be the 
components of another spinor η* whose transformation properties 
are not the same as those of |". Again treating inversion as an opera-
tion satisfying (81.1), we can define its action by 

When this operation is repeated, ξ* and η* are transformed into 
themselves, in accordance with the definition (81.1). 

Thus the inclusion of inversion as a permissible symmetry trans-
formation requires the simultaneous consideration of the pair of 
spinors (Γ, η% called a bispinor. 

Ρξ« = η*9 Ρψ = | α . (81.3) 
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§82. Dirac's equation 

A very important case is that of spin -|-, which includes the majority 
of the elementary particles. As will be clear from the foregoing dis-
cussion, a wave function that describes such particles in the relativistic 
theory is a bispinor; it is a set of four components, replacing the two 
components of the spinor wave function in the non-relativistic theory. 
Let us construct the wave equation which must be satisfied by the 
bispinor wave function of a free particle. 

From the same arguments as in §79 it is immediately evident that 
each component of the wave function, when acted on by the operator 
ρμρ

μ, must be multiplied by m2, i.e. must satisfy the Klein-Fock equa-
tion. It is also evident, however, that this equation is here insufficient: 
of the four components of the bispinor wave function, only two can 
be linearly independent, in accordance with the number of values that 
can be taken by the projection of a spin y . Hence the complete system 
of wave equations must represent a linear differential relation be-
tween the components of the bispinor, obtained by means of the ope-
rator ρμ = id/dxf; this relation must, of course, be expressed by rel-
ativistically invariant formulae. 

Since the wave function is a set of two spinors (which will be de-
noted by | a and η% in order to obtain the desired result it is reasonable 
to replace the four-vector p* by the equivalent (cf. (80.10)) operator 
spinor p^ of rank two, with components 

p& = p*+p<>9 μ = p_po9 J 

pd = - £4- ip\ ρά =ρΐ+ψ.\ 

We apply the operator p^ to the spinor | a , forming (in accordance 
with the rule (80.4)) the scalar product with respect to a pair of un-
dotted indices: 

^-p*t£h 

This product is still a spinor of rank one with respect to the dotted 
index; it can therefore be expressed only in terms of the dotted spinor 
rf. Thus we have the equation 

Ptp-ptp = rmf9 (82.2a) 
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where m is a constant (which will be shown later to be the mass of 
the particle). Similarly, applying the operator to the spinor rf and 
forming the scalar product with respect to a pair of dotted indices, we 
find 

= m£*m (82.2b) 

The relativistic invariance of these equations is guaranteed by the 
spinor form in which they are written: the two sides of each equation 
are either both dotted or both undotted spinors transformed in the 
same manner under Lorentz transformations. 

The relativistic wave equation represented by equations (82.2a, b) 
is called Dirac's equation for a free particle, having been first derived 
by P. A. M. Dirac in 1928. 

Expanding these equations by substituting the expressions (82.1) 
for the components of the operator p ^ 9 we have 

P^-PxP+ipyP-pzi1 = 

PoP-p^-ipyP+pA2 = mf, 

PoVHpx^-ipy^+pzV1 = n£\ 

Ροη2+pxrf-+ipyV1 - Ρζή2 = m| 2 , 

where po = id/dt, and px, py, pz are the three components of the op-
erator vector ρ = — i ν . 

For a free particle moving with a definite momentum ρ and energy 
ε, all the components of the wave function are proportional to the 
factor ei(p'T~et) (representing a plane wave). The action of the operator 
po multiplies such a function by ε, and that of the operator ρ multiplies 
it by p. The differential equations (82.3) are thus reduced to a set of 
homogeneous linear algebraic equations: 

(e-p*)P—(Px-iPy)P = mrj1, 

-(px+iPy)P+(e+P*)P = imf, 

(,*+Pz)r)ijc(px-iPy)ni = ml 1 , 

(Px+iPyW+(e-Pz)if 

(82.4) 
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Each of the two pairs of equations here determines two components 
of a bispinor from two other components that are given. If the two 
pairs of equations are compatible, the result of substituting, for in-
stance, η1 and η2 from the first pair in the second pair must be an iden-
tity. It is easily shown that for this to be so we must have 

e2-P2

x-Py-P2z = ε 2 ~ Ρ 2 = m<2> 

corresponding to the relativistic expression for the energy of the part-
icle in terms of its momentum, if m is the mass of the particle. This 
proves the significance of the constant m used in equation (82.2). 

The fact that only two of the four components of the bispinor wave 
function of a free particle can be chosen arbitrarily is in agreement 
with the fact that, for a given momentum, the state of a particle may 
still differ as regards the spin projection, which takes two different 
values. 

In the non-relativistic limiting case of small velocities, the particle 
must be described by a single two-component quantity, a three-di-
mensional spinor. When the velocity ν tends to zero, so does the mo-
mentum p, and the energy ε tends to the rest energy m (in ordinary 
units, wc 2). From equations (82.4) we then have | α == η*9 i.e. the two 
spinors forming the bispinor in fact become identical. 

The two pairs of equations (82.3) can be written more compactly 
by means of the Pauli matrices defined in §40: 

« = ( i i ) ' σ - = 0 1 ) ' ° - = ί - ί ) · ( 8 2 · 5 > 

If these three matrices are combined into a "matrix vector" σ, the 
equations (82.3) can be briefly written as 

(ρ0-ρ.α)ξ = πΐΎ), (A)+Ρ ·<*)?? = ml. (82.6) 

When the Pauli matrices are multiplied by the two-component quan-
tities ! and η, the usual matrix rule is applied, the rows of the matrix 
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being multiplied by the column ξ or η; for example, 

and so on. 

§83. Dirac matrices 

The spinor form of Dime's equation is a natural one in the sense 
that it shows immediately the relativistic invariance of the equation. 
But when the form of the equation has been established in this way, 
we can equally well take as the four independent components of the 
wave function any other linearly independent combinations of the 
original components. In using Dirac's equation it is in fact usually 
more convenient to take it in the most general form, where the choice 
of the wave-function components is not made in advance. 

We shall denote the four-component wave function by the symbol 
Ψ, with components Ψ;(ι = 1, 2, 3, 4); it can be represented as a 
column1" 

where the γμ (μ = 0 ,1 , 2, 3) are certain four-rowed matrices with 
elements yfk (/, k = 1, 2, 3, 4); the summation on the left of (83.2) is 
taken both over the matrix (bispinor) index k and over the four-vector 
index μ.Ι The matrix indices are usually omitted, the equation being 

t For convenience, the four-component quantity IP will be called a bispinor in 
any representation, and not only in its spinor representation. Correspondingly, 
the index which labels its components will be referred to as a bispinor index. 

% As an example, the following are the matrices γμ corresponding to the spinor 

representation of the wave function. If Ψχ = I 1, Ψ% = ί2, Ψ9 = η\ ΨΛ = rf, then 

(83.1) 

The system of Dirac's equations will be written as 

i, (83.2) 
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symbolically written 

(γμρμ-ηί) Ψ = 0, (83.3) 
where 

γμρμ = Μ ° - ρ . γ = Κγ° 8 / 8 / + γ . ν ) , (83.4) 

and γ denotes a three-dimensional "matrix vector" with components 
y\ y\ 7 3 · The column notation (83.1) for Ψ corresponds to the fact 
that the matrices γμ and Ψ in (83.3) are multiplied according to the 
ordinary matrix rule: each row of γμ is multiplied by the column Ψ9 

(γ«Ψ)ι = viFk- (83.5) 

The matrices γμ are called Dirac matrices. In the general case of an 
arbitrary representation of the wave function, they need only satisfy 
the conditions which ensure the validity of the equation 

(ΡμΡμ) Ψ = ™*Ψ, 

i.e. each component of Ψ must satisfy the Klein-Fock equation. 
To find these conditions, we multiply equation (83.3) on the left by 

γνρν. Then 
(γ%) (γμρμ) Ψ = iyvPv) mW = m*w. 

Since all the operators ρμ commute, the product ρμρν is a symmetrical 
tensor: ρμρν = ρνρμ. The product γνγμ can be separated into a symmet-
ric and an antisymmetric part: 

γνγμ = ί(γνγμ+γμγν)+γ(?νϊμ-?Ύ)· 

Ό 0 0 

0 0 — i 0 

0 — i 0 0 

0 0 0/ 

Ό 0 0 -Λ 
0 0 - 1 0 
0 1 0 0 

,1 0 0 oj 

Ό 0 - 1 0̂  

0 0 0 1 

1 0 0 0 

,ο - 1 0 ο, 

ν3 
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On multiplication by ρνρμ, the latter part vanishes, leaving 

±(γνγ»+γνγ

ν)ρνρμΨ = ηι2Ψ. 

In order that the operator on the left should reduce to ρμρ
μ, it is ne-

cessary that all the pairs of matrices with μ ^ ν should anticommute 
(γμγν — — γνγμ)^ and that the squares of the matrices should be 

( r 1 ) 2 = ( y 2 ) 2 = ( r 3 ) 2 = 1 , ( r 0 ) 2 = - 1 (83.6) 

(the right-hand sides being taken as unit matrices, of course). All these 
conditions can be combined in the form 

γβγν + γΡγμ = 2g**\ (83.7) 

where gMV is the metric tensor, with components 

(
- 1 0 0 0 \ 

1111} (83-8> 
0 0 0 1 / 

The equations (83.7) determine all the properties that are needed 
in order to use the Dirac matrices. It is not usually necessary to con-
sider the forms of these matrices in any particular representation. 

Dirac's equation can be put in a form that is solved for the time 
derivative, and so a Hamiltonian can be defined for particles with 
spin Multiplying the equation 

(γμβμ-ηι) Ψ = iy° dW/dt-y.^W-m1? = 0 

on the left by γ°, we make the coefficient of idW/dt unity (or rather a 
unit matrix). Thus 

/ θ ϊ / / 9 / = ( / γ . ρ + ^ ° ) ? / . 

The operator acting on Ψ on the right-hand side is the Hamiltonian 
of the particle. It is usually written in the form 

# = cc.p+m& (83.9) 
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§84. The current density in Dirac's equation 

Let us construct the quantities which act as the particle density 
ρ and the particle current density j in Dirac's equation. In the 
relativistic theory, these quantities form a four-vector f = (ρ, j). They 

(83.10) 

or, in a fuller notation, 

Then χ = 0 for a particle at rest. The representation of Ψ in which its 
four components are φι, φ2, χι, %2 is called the standard representation. 
It will be used in §93 in investigating the motion of an electron in an 
external field; here, we shall write Dirac's equation in this representa-
tion for a free particle. Adding and subtracting equations (82.6) term 
by term, we have 

ρ0φ-ρ.οχ=ηιφΛ ( g 3 Π ) 

-ΡοΧ+ρ.οφ = m%.) 

with the notation α = β = γ° for the matrices. It is easily seen by 
means of the relations (83.7) that the square of the operator (83.9) is 

H2 = p H m 2 , 

as it should be. In this sense we can say that (83.9) is the square root 
of p 2-f m 2! 

It has been mentioned at the end of §82 that, in the limiting case of 
small velocities, the two spinors ξ and η forming the bispinor Ψ are 
the same. Here, however, we find a certain shortcoming of the spinor 
form of Dirac's equation: in the limit, all four components of the wave 
function remain non-zero, although only two of them are really in-
dependent. A representation of the wave function in which two com-
ponents vanish in the limit may therefore be more convenient. 

This is achieved by replacing | and η by the linear combinations 
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satisfy the equation of continuity, which in four-dimensional form is 

dj"/dx" = 0 (84 .1) 

(cf. Mechanics and Electrodynamics, §55). This equation expresses the 
conservation of the quantity 

Q = J ρ dV (84.2) 

In the non-relativistic theory, this is simply the conservation of the 
number of particles, but in the relativistic theory (84.1) has a different 
significance, as will be shown in §86. 

The quantities f are expressions bilinear in the wave function Ψ and 
its complex conjugate Ψ*. Thus, to find these expressions, we must 
first determine the form of the equation satisfied by the function Ψ*. 
The wave function itself satisfies Dirac's equation: 

(ρμγ
μ-ηί) Ψ = d/dt+iy. ν - m) Ψ = 0 . (84.3) 

The complex conjugate equation is 

(-if* dldt-iy*.v-m)W* = 0 . 

It is seen from the expressions for the matrices y°, given in the second 
footnote to §83, that 

/+ = γ°* = y°, γ + = - γ , (84.4) 

i.e. the matrix γ° is Hermitian, and γ1, y 2, γ3 are "anti-Hermitian" (the 
tilde ~ denotes transposition, i.e. interchange of the rows and columns 
of the matrix)^ Hence γ°* = y°, γ * = — γ , and so 

(-iy°d/dt+iy.v-m)W* = 0 . 

To return to the original (untransposed) matrices, we note that 

γ"Ψ* = %ΨΙ = ΨΐΫί, — Ψ*γμ; 

in the symbolic notation (without the matrix indices) Ψ*^, Ψ* must 

t The expressions given in §83 relate to a specific (spinor) representation of the 
matrices, but the properties (84.4) are in fact independent of the representation. 
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This has the form of a continuity equation, in which the current 
density is represented by the four-vector 

j M = ψγμψ (84β7) 

(or, written in full with the matrix indices,/ 4 = Ψ^Ψ^). 
The time component of the four-vector (84.7) is the particle density 

= \Ψι\*+\Ψ2\*+\Ψ*\*+\Ψ4\2, (84.8) 

be taken as the row 

Ψ* = (Ff, ΨΙ ΨΙ 

multiplied by the columns of the matrices )Λ Thus we find 

ϊ / * ( - ϊ ) / ) 9 / 3 / + ι γ . ν - / η ) = 0, 

where it is conventionally supposed that the differentiation operators 
act on the function Ψ* to their left. Because the first two terms in the 
parenthesis have opposite signs, they cannot be reduced to a four-
dimensional form. To avoid this difficulty, we multiply the whole 
equation on the right by y°, and put γγ° = — γ°γ; then 

Ψ *γ°(ίγ° 3/3/ + ι γ . ν + m ) = 0. 

The function Ψ*γ° is called the Dirac conjugate of Ψ, and is denoted 

by Ψ: 

Ψ=Ψ*γ°, Ψ* = Ψγ°. (84.5) 

Thus we have, finally, 
Ψ(ρμγ«+ηι) = 0. (84.6) 

It is now not difficult to derive an expression for the current density 
as a four-vector which satisfies the continuity equation (84.1). To do 
so, we multiply equation (84.6), on the right by Ψ and (84.3) on the 
left by Ψ*, and add them term by term. The terms ±ηιΨ*Ψ cancel, 
leaving 
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and the three space components form the three-dimensional current 
vector 

Ι = ΨΊΨ= ψ*αψ9 (84.9) 

where α = γ°γ is the "matrix vector" already used in (83.9). Here α 
represents the particle velocity operator. 

We can apply (84.7) to the normalisation of a plane wave—the wave 
function of the state of a free particle with definite values of the mo-
mentum ρ and the energy ε. For a normalisation to one particle in the 
volume Ω, we write the wave as 

ψ = - L ^ y - i X e r - P . r ) . ( 8 4 1 0 ) 

the wave amplitude u(p) == w(e, p) is a constant bispinor depending 
on the four-momentum of the particle. The components of this bi-
spinor satisfy the algebraic equations 

(y^-m)u = 0 , (84.11) 

which are obtained by substituting (84.10) in Dirac's equation (84.3) 
(i.e. by simply substituting the quantities ρμ for the operators ρμ in 
that equation). We shall show that the desired normalisation of the 
function (84.10) is achieved if the amplitude u(p) is normalised by the 
condition 

uu = mj ε. (84.12) 

Multiplication of equation (84.11) on the left by ϋ gives 

(ΰγμύ)ρμ = m(uu) = m 2 /e, 

from which we see that ufu = ρμ\ε, and the current four-vector is 
therefore 

j * = ψγ

μΨ = ^ΰγ^=ζ-ε. (84.13) 

The particle density ρ = ρ°/εΩ = 1/Ω, in accordance with the re-
quired normalisation. The three-dimensional current density is j = 
ψ/εΩ = \/Ω, where ν is the velocity of the particles. 
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P A R T I C L E S A N D A N T I P A R T I C L E S 

§85. ^-operators 

It has been shown in Chapter 11 how a quantum description of a 
free electromagnetic field can be constructed, starting from known 
properties of the field in the classical limit and using the ideas of ordin-
ary quantum mechanics. The description thus obtained, in which the 
field is regarded as a system of photons, has many features that are 
applicable also to the relativistic description of particles in quantum 
theory. 

The electromagnetic field is a system with an infinite number of 
degrees of freedom. It is not subject to a law of conservation of number 
of particles (photons), and its possible states include some in which 
the number of particles is arbitrary.1* But this must be a general 
property of systems of any particles in the relativistic theory. The 
conservation of particle number in the non-relativistic theory is con-
nected with the law of conservation of mass: the sum of the (rest) 
masses of the particles is unaltered by their interaction, and the con-
stancy of the sum of the masses in a system of particles implies that 
their number is also unchanged. In the relativistic theory, however, 
there is no conservation of mass; only the total energy of the system 
(including the rest energy of the particles) is conserved. Thus the num-
ber of particles need not be conserved, and therefore any relativistic 
theory of particles must be a theory with an infinite number of degrees 

t In practice, of course, the number of photons changes only as a result of 
various interaction processes. 

20 293 



294 Particles and Antiparticles §85 

of freedom. That is to say, such a theory of particles has the character 
of a field theory. 

An adequate mathematical formalism for the description of systems 
having a variable number of particles is that of second quantisation, 
in which the independent variables are the occupation numbers of the 
various states of a particle. In the quantum description of the electro-
magnetic field, the field potential A appears as a second-quantisation 
operator. It can be expressed in terms of the wave functions of in-
dividual photons and their creation and annihilation operators. The 
quantised wave function operator plays a similar part in the descrip-
tion of a system of particles. 

The arguments given in the present section apply equally to particles 
with any spin. We shall therefore not specify the mathematical nature 
of the wave functions. For example, the plane waves will be written as 

(85.1) 

with the assumption that the wave amplitude u(p\ SL function of the 
four-momentum, may be a scalar (for spin-zero particles), a bispinor 
(for spin-y particles), and so on. 

In accordance with the general procedure of the second quantisation 
method, we have to consider the expansion of an arbitrary wave 
function in terms of the eigenfunctions of a complete set of possible 
states of a free particle, the plane waves Ψρϊ 

The coefficients tfp, αζ are then to be regarded as the operators <zp, a+ 
for annihilation and creation of particles in the corresponding states. 

Here, however, we immediately encounter a difference of principle 
as compared with the non-relativistic theory. If the plane wave (85.1) 
satisfies the wave equation, only the condition ε 2 = p 2 + m 2 need be 
satisfied; the energy itself can have two values, ε = ± ν / ( ρ 2 + ^ 2 ) · 

t For particles with spin, the summation must also be taken over the polarisa-
tions of the particle; the corresponding index will be omitted, for brevity. 
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where the first sum contains plane waves with positive "frequency" 
and the second sum those with negative "frequency"; ε always 
denotes the positive quantity + V ( P 2 + m 2 ) - In the second quantisation, 
the coefficients in the first sum are replaced as usual by the 
particle annihilation operators ap. 

In the second sum, we first of all replace the summation variable 
ρ by — p; since the summation is over all possible values of p, this 
of course does not affect either the range of summation or the value 
of the sum. After the change, the exponential factor in each term 
becomes ^ ε ί ~ ρ ' τ \ which is the same as for the complex conjugate 
wave functions Ψ* with "positive" frequencies. Such functions are 
to be multiplied in the second quantisation by the particle creation 
operators. Accordingly, we replace the coefficients cfz^ by the creation 
operators 5+ for some other particles, which are in general different 
from those to which the operators ap relate. We thus obtain the IP-
operators in the form 

4 

with the notation w(—p) = w(—ε, —ρ). 
Thus all the operators ap and hp are multiplied by functions having 

the "correct" time dependence (~ e~iBt\ while the operators a+ and 

20* 

(85.3) 

; {aMp)e-Ket-v'x)+ Ku(-p)e*"-*'% 

]{atu\p)eKEt-*^u\-p)e-^-* 

Only positive values of ε can have the physical significance of the 
energy of a free particle. But the negative values cannot be simply 
omitted: the general solution of the wave equation can be obtained 
only by superposing all its independent particular solutions. This 
shows that the interpretation of the expansion coefficients for Ψ and 
Ψ* in the second quantisation method must be somewhat different. 

We may write the expansion in the form 

(85.2) 
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hp are multiplied by the complex conjugate functions. This makes it 
possible to interpret the former operators, in accordance with the 
general rules, as annihilation operators for particles with momentum 
ρ and energy ε, and the latter as creation operators for these particles. 

In this way we arrive at the conception of particles of two types 
which occur simultaneously and on an equal footing. These are called 
particles and antiparticles; the significance of the names will be shown 
in §86. One type corresponds to the operators άρ, ά+ in the second 
quantisation formalism, and the other type to £ p, h+. The two types 
of particle have the same mass, since their operators appear in the 
same Ψ-operator, which satisfies the same wave equation. 

§86. Particles and antiparticles 

In order to elucidate further the properties and interrelation of 
particles and antiparticles, we must derive expressions for the opera-
tors of the total energy and the total number of particles in the system. 
The derivation depends on the spin of the particles; let us consider 
a field of particles with spin γ (a spinor field). 

To derive the desired expressions, it is then sufficient to know that 
for particles described by Dirac's equation there exists a Hamiltonian, 
and that the particle density is represented by the product Ψ*Ψ. 
These facts enable us to make direct use of the results obtained in 
the non-relativistic theory in §§47 and 48 (where both the properties 
mentioned above occur for particles with any spin).1" 

We have seen that, in the mathematical formalism of second quanti-
sation, the Hamiltonian Η of a system of particles is found from the 
Hamiltonian of a single particle as the integral! 

# = jP+HMpdV. (86.1) 

In the non-relativistic theory, this gave a trivial result: substitution 

t It should also be recalled that neither property occurs for relativistic particles 
with spin zero, described by the scalar Klein-Fock equation (§79). 

tThe index (1) in the single-particle Hamiltonian is used here to distinguish it 
from that of the whole system. 
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where ε ρ are the eigenvalues of the Hamiltonian i.e. the free-
particle energies. The eigenvalues of the operator products ά+ap are 
the occupation numbers Np of the states; the eigenvalues of the total 
energy of the system were therefore equal to the expression Ε = ΣερΝρ> 

which is obvious. 
Similarly, a trivial result was obtained for the total number of 

particles in the system, whose operator is given by the integral 

N = $Ψ+ΨάΥ. (86.4) 

Substitution of the Ψ-operators (86.2) gave 

# = Σ Λ > (86.5) 
P 

so that the eigenvalues were Ν = ΣΝρ. 
In the relativistic theory, the existence of negative eigenvalues of the 

particle Hamiltonian entirely changes the situation. Instead of 
(86.3), we now have 

of the ^F-onerators 

(86.2) 

gave, whatever the commutation rules for the operators αρ, άρ , 

(86.3) 

(86.7) 

(86.6) 

The first sum corresponds to positive eigenvalues ερ = + ^ / ( p 2 + m 2 ) , 
and has the same form as (86.3). The second sum corresponds to 
negative eigenvalues — ερ; this accounts for the negative sign of the 
sum. The order of the factors hp and hp in the second sum differs from 
that in the first, because the ^-operators (85.3) have hp and hp coupled 
with ap and ap respectively. Similarly, for the operator (86.4), which 
will now be denoted by (5, we have instead of (86.5) 
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To determine the eigenvalues of the operators (86.6) and (86.7), 
we must first put the factors in the second sums in the order hp5P, 
for which the eigenvalues are equal to the occupation numbers. Here, 
however, the commutation rules obeyed by the particle creation and 
annihilation operators become important. 

It is easy to see that a reasonable result for the eigenvalues of the 
Hamiltonian (86.6) is obtained only if these operators satisfy the 
Fermi commutation rules: 

άράρ -j- άράρ = 1, 

hphp -f- hp hp = 1: 

in this case, the Hamiltonian (86.6) becomes 

Ρ 

The eigenvalues of the products ά+άρ and hphp are positive integers 
iVp a n d ^ p , the numbers of particles and antiparticles in the correspond-
ing states. The infinite additive constant —2ερ, the "energy of the 
vacuum", may simply be omitted, as was done for a similar reason 
in the case of photons (§77). Then the energy of the system is given 
by the essentially positive expression 

Ε = Σ*Ρ(ΝΡ+ΝΡ), (86.9) 
P 

in accordance with the idea that two kinds of particle actually exist: 
the total energy of the system is equal to the sum of the energies of all 
the particles and antiparticles in it. 

If, instead of (86.8), we used the Bose commutation rules (commu-
tators instead of anticommutators), we should obtain 

P 

and instead of (86.9) the physically meaningless expression Σερ(Νρ— 
which is not positive-definite and hence cannot represent the 

energy of a system of free particles. 

(86.8) 
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Having thus established the commutation rules for the particle 
annihilation and creation operators, let us now consider the operator 
(86.7). Using (86.8) to change the order of factors in the second sum, 
we find 

Ρ 

The eigenvalues of this operator are (again omitting the unimportant 
additive constant Σ I) 

Ρ 

and are therefore equal to the differences between the total numbers 
of particles and antiparticles. 

This is a very important result. The operator Q corresponds to the 
quantity (84.2) whose conservation is expressed by the equation of 
continuity (84.1). We now see that this conservation law does not 
imply the conservation of the numbers of particles and antiparticles 
separately, nor of their sum. Only the difference of these numbers 
must be conserved. In other words, only particle-antiparticle pairs 
can be formed or disappear in various interactions.1. All such processes 
must, naturally, conserve the energy and momentum of the whole 
system of interacting particles. In particular, the disappearance of a 
pair in a particle-antiparticle collision must be accompanied by the 
appearance of some other particles so as to ensure the conservation 
of energy and momentum; these may be photons, in which case the 
process is called pair annihilation. 

If a particle is electrically charged, its antiparticle must have a 
charge of the opposite sign, for, if they had like charges, the appearance 
or disappearance of the pair would contravene a rigorous law of 
nature, the conservation of total electric charge. 

The quantity Q is sometimes called the field charge of the particles 
concerned. For electrically charged particles, Q determines the total 

t Here it is, of course, assumed that the interaction does not violate the conser-
vation of Q. This assumption is valid for all interactions that are known to occur. 



300 Particles and Antiparticles §87 

charge of the system in terms of the unit charge e. But particles and 
antiparticles may also be electrically neutral.1" 

Thus we see that the nature of the relativistic relation between the 
energy and the momentum (the twofold root of the equation ε 2 = 
p 2 +m 2 ) , together with the requirements of relativistic invariance, leads 
in the quantum theory to a new principle of classification of particles: 
there can exist pairs of different particles (particle and antiparticle) 
which are interrelated in the way described above. This remarkable 
prediction was first made by Dirac in 1930, before the discovery of 
the first antiparticle, the positron or antielectron.t 

§87. The relation between the spin and the statistics 

The results described in §86 have another important aspect. We have 
seen that the natural requirements of physics necessarily have the 
result that spin-y particles obey Fermi statistics. Hence in turn there 
follows the general conclusion that all particles with half-integral spin 
are fermions, while those with integral (including zero) spin are 
bosons." 

This is obvious if we note that, as regards its spin properties, any 
particle with non-zero spin s can be regarded as "composed" of 2s 
particles with parallel spins of γ (and a particle with spin zero can be 
regarded as two particles with antiparallel spins of y). When s is half-
integral, the number 2s is odd; when s is integral, 2s is even. A "com-
plex" particle formed from an odd number of fermions is itself a 
fermion, and one formed from an even number of fermions is a boson, 

t The neutrons and the neutrinos (spin \ ) are neutral fermions. The neutral 
kaons (spin 0 ) are neutral bosons. 

ί Dirac himself arrived at the idea of a positron as a "hole" in a continuum of 
occupied electron states of negative energy. This concept, however, obviously can-
not be taken literally, and, moreover, it is inadequate in the sense that the notion 
of particles and antiparticles actually applies to particles with any spin, not only 
those with half-integral spin, for which Pauli's principle is valid. 

11 The integral-spin particles include photons. The fact that photons are bosons 
has already been demonstrated in §77 from the analogy with oscillators, i.e. essen-
tially from the properties of the electromagnetic field in the classical limit. 
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as already discussed in §45: the statistics is decided by the behaviour 
of the wave function of the system of particles when any pair of them 
are interchanged, the wave function changing sign when fermions 
are interchanged but not when bosons are interchanged. The inter-
change of two particles with half-integral spin is equivalent, from the 
above discussion, to a simultaneous interchange of an odd number 
of pairs of fermions with spin -|, and therefore changes the sign of the 
wave function. The interchange of two particles with integral spin 
is equivalent to an interchange of an even number of pairs of fermions, 
and therefore does not change the sign of the wave function. 

The specific features of spin-y particles used in the analysis in §86 
were only the existence of a Hamiltonian and the expression Ψ*Ψ 
for the particle density. Both of these are due to the spinor properties 
of the wave functions of such particles and to the properties of Dirac's 
equation, which is satisfied by these functions. In turn, all these proper-
ties are essentially a consequence of just the conditions of relativistic 
invariance and the isotropy of space (i.e. a consequence of the sym-
metry under Lorentz-group transformations). In this sense, we can 
say that the relation between the spin and the statistics obeyed by the 
particles is also a direct consequence of these conditions.1" The origin 
of this relation was first elucidated by W. Pauli (1940). 

§88. Strictly neutral particles 

In the second quantisation of the wave function (85.2), the coeffi-
cients α ρ

+ ) and ^ p

_ ) were replaced by the annihilation and creation 
operators for different particles. This is not necessary, however: as a 
particular case, the annihilation and creation operators in Ψ may relate 
to the same particles. All that is necessary is that the annihilation 

t The generalisation of the relation between the spin and the statistics from the 
case of spin i to particles with any spin has been based here on the consideration 
of "composite" particles, but a similar result could also be reached by considering 
the mathematical structure of the expressions corresponding to the operators Η 
and Q for the fields of these particles, constructed in accordance with the require-
ments of relativistic invariance. 
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operators should be in the "positive-frequency" wave functions, and 
the creation operators in the "negative-frequency" wave functions. 
Then, denoting these operators by c p and cp, 

V=^peAp)e-i(e,-p-T)+etu\-p)e«°'->-*}. (88.1) 

The field described by the iP-operator corresponds to a system of 
particles of one kind only, which may be said to be their own anti-
particles. 

It is evident that the electric charge of such particles must certainly 
be zero. They are said to be strictly neutral, as opposed to electrically 
neutral particles which are not their own antiparticles. 

For strictly neutral particles there is no law of conservation of the 
field "charge" Q: the identity of particle and antiparticle corresponds 
to identical equality of the numbers Np and Np, so that the quantity 
(86.10) is identically zero. Because this limitation is removed, strictly 
neutral particles can be created or annihilated (into photos) singly, 
and not necessarily in pairs. 

Among the "elementary" particles with spin zero, the neutral pions 
are strictly neutral. An example of a strictly neutral "composite" 
particle is positronium, a hydrogen-like system consisting of a positron 
and an electron; the spin of positronium may be 0 or 1. No strictly 
neutral particles with half-integral spin are known. 

The structure of the ^-operator (88.1) is similar to that of the 
electromagnetic field operator (76.15): in both, the particle annihila-
tion and creation operators appear in the same field operator. In this 
sense one can say that the photons themselves are strictly neutral 
particles. Their creation or annihilation is the familiar emission or 
absorption of photons by a system of charged particles. 

The existence of a new symmetry property causes the particle to 
have a new property with no analogue in the non-relativistic theory. 
This concerns the transformation of charge conjugation, i.e. the 
interchange of particle and antiparticle, whose operator is denoted 
by C If a particle (or a system of particles) is not strictly neutral, charge 
conjugation involves its replacement by a different physical system, for 
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instance the replacement of a system of electrons by a system of 
positrons; this does not lead to any new property of the particle 
itself. But if the particle (or system) is strictly neutral, charge conjuga-
tion leaves it unchanged. We can therefore consider the beha-
viour of the wave function under this transformation, and hence the 
eigenvalues of the operator C. A twofold application of charge conju-
gation is, of course, an identity transformation: C2 = 1. Like any 
operator having this property, it has the eigenvalues C = ± 1; these 
are called the charge parity. If a system has a definite charge parity, its 
wave functions are unchanged or change sign under charge conjugation, 
the system being said to be charge-even or charge-odd respectively. 

As an example, let us determine the charge parity of positronium 
(see above). To describe the charge symmetry of the system, we must 
regard the particle and antiparticle (in this case the electron and the 
positron) as two different "charge states" of one particle, differing 
in the value of the "charge quantum number" Q =± 1. The wave 
function of the system is represented as the product of an orbital 
factor (depending on the coordinates of the particles), a spin factor, 
and a "charge" factor: Ψ = Ψ^Ψ,^Ψ*. 

In this case, charge conjugation is equivalent to an interchange of 
the two particles. Interchanging the coordinates of the two particles 
is, in turn, equivalent to inversion about the mid-point of the line 
joining the particles; it multiplies WOTb by (— l / , where / is the orbital 
angular momentum of the positronium (see (19.5)). The spin function 
is symmetrical with respect to interchange of the particles if their 
spins are parallel (total spin S = 1) and antisymmetrical if the spins 
are antiparallel (S = 0); see §46. Thus Wspin is multiplied by ( - 1 ) 5 + 1 . 
Finally, Wch is multiplied by the required value of C. 

The interchange of two fermions must change the sign of the complete 
wave function Ψ. Thus we must have ( — l) z (— l)s+1C = — 1, whence 

C = ( - l ) ' + * # (88.2) 
The levels with spin S = 0 are called parapositronium levels, and those 
with S = 1 orthopositronium levels. In the ground state / = 0, so that 
the ground states of parapositronium and orthopositronium are respec-
tively charge-even (C = 1) and charge-odd (C = - 1 ) . 
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Positronium is unstable, the electron and the positron ultimately 
undergoing mutual annihilation. The charge parity of positronium 
places certain restrictions on the ways in which this annihilation can 
occur. We shall see later that the photon is a charge-odd particle 
(cf. the first footnote to §95). Hence, for example, in the ground state 
of parapositronium (C = 1), annihilation can occur with the forma-
tion of two photons (the charge parity of the two-photon system 
being C = — 1X — 1 = 1), but in the ground state of orthopositro-
nium (C = — 1) decay into two photons is impossible, and the annihi-
lation takes place with the formation of three photons.1" 

The neutral pion mentioned above is also unstable and decays 
into two photons. Hence it follows that this particle is charge-even; 
its decay into an odd number of photons is forbidden for that reason.t 

§89. Internal parity of particles 

We have already seen, in the discussion of the non-relativistic quan-
tum theory, how the symmetry with respect to inversion of the space 
coordinates leads to the occurrence of a new characteristic of the state 
of a particle, namely its parity. The relativistic theory adds another 
aspect to this concept. 

Let us first consider particles with spin zero, described by scalar 
wave functions. Scalars can be of two kinds, the difference between 
which lies precisely in their behaviour under inversion. Inversion 
changes the sign of the coordinates in the arguments of the function, 
and may also either change or not change the sign of the function 
itself: 

ΡΨ(ί,τ)=±Ψ(ί,-τ), (89.1) 

the signs + and — on the right corresponding to true scalars and 
pseudoscalars respectively. 

t The lifetime of parapositronium (i.e. the reciprocal of its decay probability) 
is 1 .2x10" 1 0 sec. That of orthopositronium is much longer ( 1 . 4 x l 0 ~ 7 sec), 
because of the smaller probability of decay into a greater number of photons. 

t In this argument it is tacitly assumed that the charge parity of the system is 
conserved. We shall return to this point in §90. 
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Hence we see that two features of the behaviour of the wave func-
tion under inversion must be distinguished. One of these relates to the 
dependence of the wave function on the coordinates. In non-relativ-
istic quantum mechanics, only this aspect was considered; it leads to 
the concept of the parity of a state (which we shall here call the orbital 
parity), describing the symmetry properties of the motion of the part-
icle. If the state has a definite orbital parity ( + 1 or — 1), this means 
that 

Ψ(ί, - r ) = ± y ( f , r ) . 

The other feature is the behaviour of the wave function at a given 
point (which may conveniently be taken as the origin) under inversion 
of the coordinate axes. This leads to the concept of the internal 
parity of the particle. The two signs in the definition (89.1) correspond 
to internal parity -f 1 and — 1 (for a particle with spin zero). The total 
parity of a system of particles is given by the product of their internal 
parities and the orbital parity of their relative motion. 

The "internal" symmetry properties of various particles appear, of 
course, only in their mutual transformation processes. In non-relativ-
istic quantum mechanics, the analogue of the internal parity is the 
parity of a bound state of a composite system, such as a nucleus. In 
the relativistic theory, which makes no essential difference between 
composite and elementary particles, this internal parity is no different 
from the internal parity of those particles which are regarded as ele-
mentary in the non-relativistic theory. In the non-relativistic case, 
where these particles are to be regarded as unalterable, their internal 
symmetry properties are not observable, and a discussion of these 
would be devoid of physical significance. 

The concept of internal parity can be readily formulated in the rest 
frame of the particle, where the wave function reduces to a quantity 
independent of the coordinates (the wave amplitude u in the functions 
(85.1)). For particles with spin zero, this quantity is a scalar or a 
pseudoscalar, the transformation of which amounts simply to a multi-
plication by -f 1 or — 1. 

For a particle with spin \ , the wave function in the rest frame re-
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duces to a single three-dimensional spinor (see the end of §82). The 
concept of the internal parity of the particle depends on the behaviour 
of this spinor under inversion. It has already been mentioned in §81 
that, although the two possible transformation laws for three-dimen-
sional spinors (the two signs in (81.2)) are not mutually equivalent, 
the assignment of a particular parity to a spinor has no absolute 
significance. There is therefore also no meaning in speaking of the 
internal parity of a spin-y particle by itself. We can, however, refer 
to the relative internal parity of two such particles. 

Let us consider from this standpoint the relative internal parity of 
a particle and its antiparticle. For a spin-zero particle, the question 
is trivial: such particles and antiparticles are described by the same 
(scalar or pseudoscalar) wave functions, and their internal parities are 
therefore obviously the same. 

Two spinors ξ = and η = forming a bispinor Ψ = ^ 

describing a particle with spin \ (say, an electron) reduce to the same 
three-dimensional spinor in the rest frame of the particle, which we 

denote by Φ{€) = 

ξ = η = φ<·>. (89.2) 

The inversion operation defined according to (81.3) replaces ξ by η; 
from (89.2), this definition corresponds to a transformation of the 
three-dimensional spinor Φ ( β ) such that 

βφΜ = φ(*>. (89.3) 

The positron corresponds to the "negative-frequency" wave func-
tions arising from Dirac's equation with the sign of the four-momen-
tum ρμ changed (in the ^-operators (85.3), the positron operators 
5 P , hp appear as coefficients of wave functions with amplitudes u(—p)). 
The equation (89.2) for an electron in the rest frame followed from 
Dirac's equations (82.4) with ρ = 0, ε = m. If (ε, ρ) in these equations 
is replaced by (—ε, —ρ) and we then put ρ = 0, ε = m, the result is 

ξ =-η = φ(ρ). (89.4) 
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The inversion operation, replacing ξ by η, will now correspond to the 
following transformation of the three-dimensional spinor Φ ( ρ ) : 

=_φ(ρ) , (89.5) 

with the opposite sign to that in (89.3). Hence a scalar constructed 
from products of components of Φ(β) and Φ(ρ) will change sign on 
inversion. We therefore conclude that the internal parities of particle 
and antiparticle with spin \ are opposite (V. B. Berestetskii 1948). 

§90. The CPT theorem 

The space-time symmetry properties of physical phenomena are 
expressed by the invariance of the equations describing them, under 
various transformations of the four-dimensional coordinate system. 

A universal law of nature is that of relativistic invariance, i.e. in-
variance under transformations of the Lorentz group.1" As shown in 
§80, these include both the ordinary three-dimensional rotations and 
the Lorentz transformations (rotations of the four-dimensional co-
ordinate system, which change the direction of the time axis). 

As well as these transformations, there are others which do not 
reduce to rotations: spatial inversion (reversal of the direction of the 
three spatial axes) and time reversal (reversal of the direction of the 
time axis). The invariance under spatial inversion (P invariance) ex-
presses the mirror symmetry of space. The invariance under time 
reversal (Τ invariance) expresses the equivalence of the two directions 
of time. Both these are valid for phenomena described by the non-
relativistic theory. 

For phenomena pertaining to the relativistic case, however, the 
symmetry under spatial inversion (and the related law of conserva-
tion of spatial parity) is no longer universal. The available experi-
mental data show that this symmetry is conserved in electromagnetic 
interactions and in what are called strong interactions (nuclear forces). 

t To avoid misunderstanding it should be emphasised that the phenomena under 
consideration do not involve gravitational fields. 
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It is, however, violated in weak interactions, i.e. those which are res-
ponsible for the majority of slow decays of elementary particles 
(e.g. β-decay).1" 

In weak interactions the symmetry between particles and antipart-
icles expressed by the transformation of charge conjugation (C in-
variance) is also violated. There are, however, no experimental results 
indicating a violation of this symmetry in electromagnetic and strong 
interactions. 

The loss of symmetry under spatial inversion in certain interaction 
processes need not imply that space has only mirror symmetry. The 
symmetry of space could be "saved" if there were a universal law of 
nature asserting invariance under a transformation consisting of si-
multaneous inversion and charge conjugation (the CP transforma-
tion, or combined inversion)^ In this transformation, particles are 
replaced by antiparticles simultaneously with spatial inversion. If there 
is CP invariance, the processes involving particles and those involving 
antiparticles would differ by spatial inversion. On this view, space 
would remain entirely symmetrical, the asymmetry being transferred 
to the charged particles. This asymmetry would not affect the sym-
metry of space, in the same way as the latter is not affected by the 
existence of stereoisomeric molecules (those which are related in the 
same way as an object and its mirror image). 

These arguments are, however, not entirely confirmed by experi-
ment. Although the majority of weak-interaction processes are in fact 
CP-invariant, there are some which are not. It is as yet unclear what 
will be the significance of such violations of CP invariance in future 
theories. 

Thus the requirements of symmetry with respect to each of the 
transformations C and Ρ (and T) separately are not universal laws 
of nature. Their universality, it should be emphasised, is not a logical 
consequence of the principles of the existing theory, as well as not 
being confirmed by experiment. These principles do, however, imply 

t The idea that parity might not be conserved in weak interactions was first put 
forward by T. D. Lee and C. N. Yang (1956). 

t These ideas were put forward by L. D. Landau (1957). 
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invariance under the three transformations simultaneously. We shall 
show how this symmetry arises as a natural consequence of the require-
ments of relativistic invariance. 

In order to clarify the argument, let us first recall some concepts 
pertaining to transformations of three-dimensional space. 

A reversal of the direction of one of the coordinate axes x, y, ζ is a 
mirror reflection in a certain plane; for example, the transformation 
x-+ — x, y y, ζ ^ ζ is a reflection in the .yz-plane. This transforma-
tion cannot be reduced to any rotations of the coordinates. A reversal 
of the directions of two axes, however, is equivalent to a rotation; for 
example, the transformation x-+ — x, y — y, ζ ζ is a rotation 
through 180° about the z-axis. Finally, a reversal of the directions of 
all three axes (inversion of the coordinates) is a transformation that 
cannot be reduced to rotations; inversion and reflection in a plane 
are, however, reducible to one another, in the sense that they differ 
only by a rotation of the axes.1^ 

A similar situation exists for a four-dimensional space-time coordi-
nate system. But, as well as the reversal of the direction of one, two, or 
three axes, we can here have a simultaneous reversal of all four axes 
(four-dimensional inversion or four-inversion). In purely mathematical 
terms, this transformation is a rotation of the four-coordinates. There 
is admittedly a specific difference between four-inversion and the ro-
tations forming the Lorentz group, due to the fact that four-dimen-
sional space-time geometry is pseudo-Euclidean. Because of this pro-
perty, no physical (Lorentz) transformation of the frame of reference 
can bring the time axis outside the interior portions of the light cone 
(as defined in Mechanics and Electrodynamics, §34); physically, this 
expresses the impossibility of relative motion of two frames of refer-
ence at a speed exceeding that of light. Under four-inversion, however, 

t Mathematically, the difference between the two types of linear transformation 
of the coordinates 

k: 

(where xx = x, x2 = y, x3 = z) is shown by the value of the determinant formed 
from their coefficients. For any rotation of the coordinates, the determinant 
|a i J f c| = 1, but for reflections that cannot be reduced to rotations | α α | = — 1. 

21 
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the time axis (or rather each half of it) is brought from one interior 
portion of the light cone to the other. 

Although this implies that four-inversion is physically impossible 
as a transformation of a reference frame, we can reasonably suppose 
that the difference from other four-dimensional rotations (Lorentz 
transformations) is unimportant in relation to the mathematical in-
variance of any particular equations. Thus we conclude that any 
relativistically invariant law of nature must also be invariant under 
four-inversion. It remains to ascertain what is the significance of this 
statement as regards the quantum theory of particle fields. This will 
be done for the simple case of a field of spin-zero particles. 

In this case, the wave amplitudes u(p) in the ^-operators (85.3) are 
scalars, and therefore independent of the sign of the argument, the 
four-momentum / Λ Taking them outside the braces, we can therefore 
write simply 

•i{νί(ε'-ρ * r ) + £ p V < e ' - p ·'>}. (90.1) 

Under four-inversion, t and r are replaced by — ί and — r, and this 
expression becomes 

r{<V /(e'~p r ) + fte-**'-* ·'>}. (90.2) 

In the second quantisation formalism, the change from (90.1) to (90.2) 
must be expressed in terms of a transformation of the particle crea-
tion and annihilation operators. A comparison of (90.1) and (90.2) 
shows that this transformation consists of the interchange of the ope-
rators ap and b+ or, equivalently, of the changes 

tfP - Κ - # · (90.3) 

The significance of the transformation (90.3) is evident. Inversion 
changes the sign of the momentum vector p, but the sign of this is 
also changed by time reversal (the particle velocity changing to the 
opposite direction). Hence the simultaneous application of the trans-
formations Ρ and Τ leaves the particle momenta unaltered, and ac-
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cordingly the operators transformed into each other pertain to states 
with the same p. Next, time reversal, which replaces the future by the 
past, converts the appearance of a particle into its disappearance; 
accordingly, the particle creation and annihilation operators are inter-
changed. We also see, however, that in (90.3) the a and b operators are 
interchanged; this means that the transformation (90.3) includes the 
interchange of particles and antiparticles. 

Thus, in the relativistic theory, there is a natural requirement of 
invariance under a transformation comprising spatial inversion, time 
reversal and charge conjugation. This is called the CPT theorem.* 

By virtue of the CPT theorem, the violation of CP invariance in any 
phenomenon necessarily implies that of Τ invariance. 

Dirac's equation is invariant with respect to inversion. This in-
variance occurs because the bispinor wave function includes two 
spinors which become each other on inversion. In turn, the need to 
include two spinors in the description of the particle arises from the 
mass of the particle: it is seen from (82.2) or (82.6) that the quantity 
m provides the "coupling" of these spinors in the wave equation. 

The necessity disappears if the particle mass is zero. A particle of 
this kind with spin γ is the neutrino. The wave equation which describes 
such a particle can be derived from a single four-spinor, say the un-
dotted spinor 

i.e. the first equation (82.6) with m — 0. 
For a plane wave (a particle with momentum ρ and energy ε), equa-

tion (91.1) reduces to the algebraic system 

( ε - ρ . σ ) | = 0 . 

§91. Neutrinos 

The wave equation is 
( ρ ο - ρ . σ ) | = 0, (91.1) 

t It was enunciated by G. Liiders, W. Pauli, and J. Schwinger (1955). 

21* 
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The energy of a zero-mass particle is related to its momentum by 
ε = |p | . If η is a unit vector in the direction of motion, then 

(η.σ)£ = { . (91.2) 

This equation has a simple significance. For a two-component wave 
function, the matrix s = \o is the particle spin operator (see §40). The 
product \vk.o is therefore the operator of the particle helicity λ (the 
component of the spin in the direction of the momentum). Hence 
equation (91.2) signifies that the particle has a definite helicity λ = 
= + y , i.e. the spin is in the direction of motion. 

Thus we conclude that a particle described by only one (undotted) 
spinor must always have a definite helicity λ = + γ . In an exactly 
similar manner, for a particle described by the dotted spinor 

we have instead of (91.2) the equation 

(η.σ)η =-rh (91.3) 

i.e. such a particle always has the helicity λ = — ~, its spin being 
opposite to the momentum. We can say that in either case there must 
be longitudinal polarisation of the particle. 

It is easily seen that a particle and antiparticle must have opposite 
helicities. If one of them is described by spinors I, the other must be 
described by the complex conjugate spinors ξ*; this is evident from 
the form of the ^-operators (85.3), in which the particle and anti-
particle annihilation operators ά9 and hp are multiplied by complex 
conjugate functions. But the spinor I* conjugate to the undotted spinor 
ξ is equivalent to a dotted spinor, which proves the above statement. 
It is usual to call the particle with helicity — \ the neutrino, and that 
with helicity + y the antineutrino.* 

t The existence of neutrinos as electrically neutral particles with mass zero and 
spin i was theoretically predicted by W. Pauli (1931) in order to explain the prop-
erties of β-decay. The theory of the neutrino as a particle described by a four-
spinor with two components was evolved by L. D. Landau, A. Salam, T. D. Lee, 
and C. N. Yang (1957). 

file:///vk.o
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Inversion changes the sign of the helicity since the projection of the 
spin on the direction of motion is obtained by scalar multiplication 
of the angular momentum vector by the particle momentum. The 
angular momentum vector, being an axial vector, is unchanged by 
inversion; the momentum, a polar vector, changes sign. This clearly 
shows that the neutrino is not symmetrical with respect to inversion: 
inversion "converts" the neutrino into a particle that does not exist 
in nature: a neutrino with reversed helicity. There is symmetry only 
with respect to combined inversion, i.e. inversion with simultaneous 
replacement of the neutrino by an antineutrino. It is therefore natural 
that mirror symmetry does not occur in processes involving neutrinos, 
such as the /?-decay of the neutron into a proton, an electron and an 
antineutrino (n p+e+v). 
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E L E C T R O N S I N A N E X T E R N A L F I E L D 

§92. Dirac's equation for an electron in an external field 

The wave equations of free particles express essentially only those 
properties which depend on the general requirements of space-time 
symmetry. Physical processes involving the particles, however, depend 
on their interaction properties. 

In the relativistic theory it proves impossible to obtain by any simple 
generalisation of the wave equations a description of particles that are 
capable of strong interactions, i.e. a description going beyond the 
information contained in the equations for free particles. 

The wave-equation method, however, is applicable to the descrip-
tion of electromagnetic interactions of particles that are not capable 
of strong interactions. These include electrons (and positrons), and the 
very wide domain of electron quantum electrodynamics is therefore 
accessible to the existing theory.1" 

In this chapter we shall discuss problems of quantum electrodyna-
mics which fall within the scope of single-particle theory. These are 
problems in which the number of particles is unchanged, and the inter-
action can be represented in terms of an external electromagnetic 
field due to sources whose state remains constant in the course of 
time. 

t There are also unstable particles, the muons, which are not capable of strong 
interactions; they have the same spin ( |) as the electron, and are described by the 
same quantum electrodynamics as regards phenomena occurring in times short in 
comparison with their lifetime (with respect to weak interactions). 

314 
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The wave equation for an electron in a given external field can be 
derived in the same way as in the non-relativistic theory (§43). Let Φ 
be the scalar potential and A the vector potential of the field. We ob-
tain the desired equation on replacing the momentum operator ρ = 
= — i v in the Hamiltonian of Dirac's equation (83.9) by p—eA and 
adding to the Hamiltonian the potential energy βΦ of the part-
icle:1* 

Η = OL.(p-eA)+βm+eΦ. (92.1) 

These are the only necessary changes; no artificially added terms like 
that in (43.4) are needed here. We shall see later that the magnetic 
moment of the electron makes its appearance automatically. 

In four-dimensional notation, the transition from (83.9) to (92.1) 
signifies the replacement of the four-momentum operator ρμ = 
id/dx? according to 

Ρμ - Ρμ-eA^ (92.2) 

where Αμ = (Φ, Α), Αμ = (Φ, - A) is the four-potential of the field. 
Hence Dirac's equation for a particle in a field can also be written 

[y^-eA,)-m]W = 0, (92.3) 

which is obtained from (83.3) by making the same change. 
The current density expressed in terms of the wave function is 

given by the same formula (84.7) as when the external field is absent. 
It is easily seen that, on repeating with (92.3) the same arguments 
as were used in the derivation of (84.7), the four-potential Αμ disap-
pears and the equation of continuity is obtained for the previous ex-
pression for the current. 

§93. Magnetic moment of the electron! 

In §43 we have established the form of the non-relativistic Hamilto-
nian for the motion of a particle with spin in an external magnetic 
field. In that expression, however, the magnetic moment of the particle 

t The letter e denotes the charge together with its sign, sojthat for"*the electron 
e = - \e\, but for the positron e — +\e|. 

t In §§93 and 94 ordinary units are used. 
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appeared as an empirical parameter whose value could not be found 
theoretically. For a particle whose behaviour in an electromagnetic 
field obeys Dirac's equation (92.3), such as an electron, the value of the 
magnetic moment is established by the equation itself. 

For this purpose, we shall show how Dirac's equation may be put 
in an approximate form corresponding to the non-relativistic Hamil-
tonian (43.4). Since the particle is regarded as moving at velocities 
ν <§: c, we can reasonably start from the standard representation of the 
bispinor function Ψ, in which one pair of components is small in 
comparison with the other, χ <$c φ (see the end of §83). 

In §83, Dirac's equations in the standard representation of the wave 
function were written for a free particle (83.11). The introduction of 
an external electromagnetic field into these equations is achieved by a 
change of operators in accordance with (92.2); thus we have 

(ρο -*Φ)φ-σ . (ρ -£ΑΑΟχ = mcφ9 J 
-(ρο-6Φ)χ+<*.($-€ΑΙό)φ =mc%, J 

where 
po = (ih/c) d/δ/, ρ = — ι* ν . 

To obtain the non-relativistic approximation, however, the wave 
function must first be subjected to a further transformation. The reason 
is that the relativistic expression for the particle energy (and therefore 
the relativistic Hamiltonian) contains an extra term, the rest energy 
rac2, in comparison with the non-relativistic expression. This gives 
rise to an extra factor exp(—imc2t/h) in the time dependence of the 
wave function. To exclude this factor, we replace Ψ by a new wave 
function Ψ': 

Ψ = Ψ' exp (-imcHlh). (93.2) 

Substituting this in (93.1), we obtain the following equations for the 
two-component quantities φ' and %' which constitute the four-compo-
nent!? ' : 

co.(v-eA/c)X\ (93.3) 

= co . (p -*A/c )0 \ (93.4) 



In expanding the right-hand side, we use the following properties 
of the Pauli matrices, which follow immediately from the definitions 
(82.5): 

Gx — Gy — Gz — 1, 

GyGZ = — GzGy = IGX , 

Οζβχ = —OV7z = My, 

CxGy ——OyOX — IGZ. 

Writing temporarily f = p —eA/c 9 we have 

(σ · f ) 2 = (GXfX + Gyfy + GZfZ) (axfX + Oyfy + ΟZfZ) 

= fX

2+fy2+f?+i*M . 

If f x , f y 9 and fz commuted, this would be simply f 2, but in the present 
case 

(93.6) 
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(93.5) 

The factor 1/c on the right expresses the smallness of χ in comparison 
with φ. Now, substituting (93.5) in (93.3), we obtain an equation 
containing onlv ώ: 

[o.(p-eA/c)] 2 0. 

= (ieh/c)Hz, etc., 

In what follows we shall omit the primes from φ' and this will 
cause no misunderstanding, since only the transformed function Ψ' 
is used in the present section. 

In the first approximation, only the largest term 2mc2 is retained 
in the parenthesis on the left of (93.4). Then this equation enables 
us to express γ directly in terms of φ: 
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where Η = curl A is the magnetic field. Thus 

[o . (p-eA/c) ] 2 = ($-eA/cf-(eh/c)a.H9 

and we therefore obtain the following equation for the two-component 
wave function φ: 

φ = Ηφ. (93.7) 

where s == -|σ is the electron spin operator. The magnitude of this 
angular momentum is, by (43.1), 

μ = ehjlmc. (93.9) 

As already mentioned in §43, the gyromagnetic ratio e/mc for the 
intrinsic magnetic moment of the electron is twice its value for a 
magnetic moment due to orbital motion.1^ 

Formula (93.9) is valid also for the magnetic moment of the muon 
(with the latter's mass as m in the denominator). It is, however, entirely 
incorrect for protons and neutrons, although these are also spin-^ 
particles. The difference is particularly noticeable for the neutron, 
which, being electrically neutral, should according to (93.9) have no 
magnetic moment. This shows clearly the inapplicability of the existing 
quantum electrodynamics to particles that are capable of strong 
interactions. 

t This result was derived by P. A. M. Dirac in 1928. The two-component wave 
function satisfying (93.7) was introduced by W, Pauli (1927), before Dirac*s dis-
covery of his equation. 

This is PaulVs equation. A comparison of the Hamiltonian in it 
with (43.4) shows that the electron has a magnetic moment corres-
ponding to the operator 

(93.8) 
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§94. Spin-orbit interaction 

The calculations given in §93 represent essentially the beginning of 
an expansion of the exact solution of Dirac's equation in powers of 
the small ratio vjc. Equation (93.7) corresponds to including in such 
an expansion only terms of the first order of smallness, as is indicated 
by the factor l/c in the additional term — μ .H in the Hamiltonian. 

In the second approximation, the Hamiltonian contains further 
terms. The corresponding calculations are more laborious, however, 
and will not be given here; we shall simply state the final result for 
the Hamiltonian of an electron in an external electric field, as far 
as terms of order lie2: 

(94.1) 

where Φ is the potential and Ε = - grad Φ is the field strength. As 
in (93.7), this Hamiltonian acts on a two-component wave function. 

The last three terms in (94.1) are the required corrections of order 
l/c 2 . The first of them corresponds to the relativistic correction 
to the classical expression for the kinetic energy of the particle: 

The next correction term in (94.1) may be called the spin-orbit 
interaction energy: it is the energy of the interaction of the moving 
magnetic moment with the electric field. If the electric field is centrally 
symmetric, then 

1 >K. 

and the spin-orbit interaction operator can be put in the form 

(94.2) 

Here fn = r x p is the electron orbital angular momentum operator, 
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s = -|-σ is the electron spin operator, and U = e(j) is the potential 
energy of the electron in the field. An interaction of this type has 
already been considered in §51 as one source of the fine structure of 
atomic energy levels.1" 

The last correction term in (94.1) is zero except at points where 
there are charges creating the field, since div Ε = 0 except at such 
points. 

The Hamiltonian (94.1) can be used to calculate the relativistic 
corrections to the energy levels of the hydrogen atom, i.e. of an electron 
in the Coulomb field of a fixed proton nucleus with charge +\e\. 

The field potential of the charge +\e\ is Φ = \e\/r, and the diver-
gence of the field is div Ε = — Δ Φ = 4π \e \ <5(r); cf. Mechanics and 
Electrodynamics, (59.10). The correction terms in the Hamiltonian 
of the hydrogen atom, which we denote jointly by Ϋ(2\ have the form 

(94.3) 

The non-relativistic expression for the energy levels of the hydrogen 
atom is (§31) 

£non-r = -me*/2hW; (94.4) 

it depends only on the principal quantum number n, and not on the 
orbital angular momentum / of the electron, which, for a given n, 
takes the values / = 0 , 1 , . . . , w — 1. The non-relativistic levels (94.4) 

are also independent of the direction of the electron spin relative to 
its orbital angular momentum, i.e. independent of the total angular 
momentum j , which, for a given / ^ 0 , can take two values: j = l±\. 

The required corrections ΔΕ to the levels (94.4) can be found from 
the general rules of perturbation theory (§32). Regarding (94.3) as the 
operator of a small perturbation, we have to calculate its mean value 
(diagonal matrix element) with respect to the unperturbed wave 
functions, i.e. the ordinary non-relativistic wave functions of the 

t Another type of relativistic interaction, the spin-spin interaction, of course 
occurs only in a system of more than one particle, and not for a single electron in 
an external field. 
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hydrogen atom. Calculation gives the result 

(94.5) 

where 
α = e*/hc = 1/137.04 (94.6) 

and is called the fine-structure constant.^ The factor a 2 expresses the 
smallness of the correction (94.5) relative to (94.4). 

The shift (94.5) of the level depends on j as well as on n. This 
dependence corresponds to the splitting of the levels (94.4) into fine-
structure components; the degeneracy present in the non-relativistic 
approximation is said to have been removed. This removal is not 
complete, however, since the levels with the same values of η and j 
but different values of / = j ± \ remain doubly degenerate. (This 
again is a property peculiar to the hydrogen atom with the purely 
Coulomb field of its nucleus, and does not occur for more complex 
atoms.) Thus the sequence of hydrogen levels, with allowance for 
the fine structure, is 

where the braces join the mutually degenerate states. Only the levels 
having the largest possible value of j (for a given m) remain non-
degenerate. 

To anticipate, it may be mentioned here that the remaining degene-
racy is removed by "radiative corrections" (the Lamb shift), which are 
neglected in Dirac's equations for the single-electron problem. These 
corrections will be discussed in §106. 

1̂ 1/2; 

2^1/2, 2/? 1 / 2 , 2/? 3/ 2; 

3λί/2, 3/?i/2, 3/?3/2, 3*4/2, 3ί/ 5 / 2; 

t This formula was first derived by A . Sommerfeld on the basis of the old Bohr 
theory, before the discovery of quantum mechanics. 
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R A D I A T I O N 

§95. The electromagnetic interaction operator 

Let us now proceed from problems in which the electromagnetic 
field has the passive role of providing external conditions for the 
motion of particles to the broader category of electrodynamic pheno-
mena accompanied by a change in the state of the field itself. These 
are phenomena involving the emission, absorption, or scattering of 
photons by systems of charged particles. 

The interaction of electrons with a field of electromagnetic radiation 
can, as a rule, be treated by means of perturbation theory. This is 
because the electromagnetic interactions are comparatively weak. 
The interaction of an electron with the field is determined by its 
charge e, and the "coupling constant" that gives the scale of the inter-
action is the dimensionless quantity α = e2/hc already mentioned in 
§94 as the fine-structure constant. The weakness of the electromagne-
tic interactions is expressed by the smallness of this constant: α = 
1/137, a smallness that is of fundamental importance in quantum 
electrodynamics. 

Let us first ascertain the form of the operator for the interaction 
of an electron with the radiation field, which acts as the perturbation 
operator. We shall suppose (as in Chapter 11) that the field potentials 
are taken in a gauge such that the scalar potential Φ = 0, so that the 
field is described by just the vector potential A. According to (92.1), 
the interaction of an electron with a given electromagnetic field is 
described by a term Ϋ = — e a . A in its Hamiltonian. To go to the 

322 
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more general case of processes in which the state of the field changes, 
the potential A must be replaced by the corresponding second-
quantised operator A; then the interaction operator is1" 

Ϋ = -eu.A. (95.1) 

The operator A is the sum 

A(/, r) = Σ {cnKit, r)+CrtAfa r)}, (95.2) 
η 

which contains the operators of photon annihilation and creation in 
various states labelled by the suffix n; the coefficients A„(t, r) act as 
the wave functions of these states. The state of the field is specified by 
the set of occupation numbers Nn of all the photon states. The photon 
states themselves may be specified in various ways, depending on the 
particular problem concerned. For example, if we are considering the 
emission or absorption of photons with definite wave vectors k and 
polarisations e, the wave functions An(t, r) are the plane waves (76.16). 
If, on the other hand, the problem concerns the emission of photons 
with definite values of the angular momentum j \ the An are spherical 
waves, as discussed in §78. 

In the first approximation of perturbation theory, the probability 
of a particular process is given by | Vfi | 2 , where Vfi is the matrix element 
of the perturbation operator for a transition between the initial (/) and 
final ( / ) states of the system of charges and the field. Each operator 
c r t, has non-zero matrix elements only for an increase or decrease 
of the corresponding occupation number Nn by 1 (the other occupation 
numbers remaining unchanged). The operator A therefore also has 
matrix elements only for transitions in which the number of photons 
changes by 1. That is, only processes of the emission or absorption 
of a single photon occur in the first approximation of perturbation 
theory. 

t The charge-conjugation operator, which replaces particles by antiparticles, 
must not affect the form of the interaction operator. It replaces positively charged 
particles by negatively charged ones, and in particular makes the change e -*· — e. 
The invariance of V requires a simultaneous change of the photon field operator 
A - A; photons are therefore charge-odd particles. 
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The first of these corresponds to the absorption of one photon (of 
type «), the occupation number decreasing by one; the second corres-
ponds to the emission of one photon, the occupation number increas-
ing by one. If there are no photons of type η in the initial state of the 
field, then (1 | c+|0) = 1; the matrix element of the operator A also 
contains the factor A* that appears in the sum (95.2) as the coefficient 
of c„. Thus the complete matrix element of the operator (95.1) for 
the emission of a photon is 

Vfiif) =-β$(Ψ?«Ψ;).Α*ηάν, (95.5) 

where Ψί and Wf are the wave functions of the initial and final states 
of the emitting electron.1" Similarly, we obtain the matrix element for 
photon absorption: 

Vfl(t)=-ejCPf*Wi).AndV. , (95.6) 

This differs from (95.5) only by having A n in place of A*. 
The argument t of Vfi is shown in order to emphasise that the matrix 

element is time-dependent. By separating the time factor in the wave 
functions, we can change in the usual way, in accordance with the rule 
(11.4), to the time-independent matrix elements: 

Vfi(t) = Vfi exp {-itEi-Ef+c^tl (95.7) 

where Ei9 Ef are the initial and final energies of the radiating system, 
and the upper and lower signs in the exponent are for emission and 
absorption of a photon with energy ω. 

t To avoid misunderstanding, it should be stressed that one electron can radiate 
only when moving in an external field. The impossibility of photon emission by a 
free electron (moving with constant velocity) is especially clear if the electron is 
considered in a frame of reference where it is at rest; in that frame, the energy of 
the electron is m, and cannot decrease as it would have to do on the emission of a 
photon. 

According to (76.12), the matrix elements are 

{Nn-\\cn\Nn) =VNn, (95.3) 

(ΝΛ+1\<£\ΝΛ)=ν(ΝΛ+1). (95.4) 
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The product 
irt = T}aWt (95.8) 

which appears in the integrand in (95.5) and (95.6) is similar in form 
to the expression j = Ψ*αψ (84.9) for the current in Dirac's equation; 
it has two different (initial and final) wave functions instead of the 
same one twice. The quantity (95.8) is called the transition current. 

For the emission (or absorption) of a photon having a definite 
direction of the wave vector k and a definite polarisation e, the func-
tion An(r) must be taken as 

where 
lri(k) = J W r > - < k - r d K . ' (95.11) 

The integral (95.11) is the Fourier component of the function ]fi(r), 
and is called the transition current in the momentum representation. 

The photon emission probability can be found directly from the 
matrix element (95.10) by means of a general formula of perturbation 
theory derived in §35. We shall suppose that the initial and final 
states of the emitter belong to its discrete spectrum of energy levels. 
The final state of the electron 4- field system will, however, belong to 
the continuous spectrum, because of the emitted photon, the spectrum 
of possible values of the photon energy being continuous. Thus we 
have here the same formulation of the problem as was considered in 
§35. According to (35.6), the probability (per unit time) of the transi-
tion ι -> / with emission of a photon is 

dw = 2n\Vft\* d(Ei-Ef-co) dv9 (95.12) 

where ν arbitrarily denotes the ensemble of quantities describing the 

22 

(95.10) 

i.e. the plane wave (76.16) without the factor e~i(0t. For the matrix 
element of a transition with the emission of such a photon, we have 

(95.9) 
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state of the photon and taking a continuous sequence of values. For 
photons with definite values of the wave vector, the quantities ν are 
the components of k, so that dv = dkx dky dkz = ω 2 άω do (where do 
is the element of solid angle for the directions of k). With this choice 
of ν in formula (95.12), it would be assumed that the photon wave 
function is normalised to <5(k). But the function (95.9) is normalised 
to one photon in the volume Ω; with this normalisation, the wave 
function contains a factor l/χ/Ω instead of the factor ( 2 π ) _ 3 / 2 in the 
normalisation to <5(k) (cf. (27.9) and (12.10)). Hence formula (95.12) 
must now be written 

§96. Spontaneous and stimulated emission1 

In subsequent sections we shall use the formulae derived above to 
calculate the transition probabilities in various specific cases. Here we 
shall consider certain general relations between radiative processes of 
various kinds. 

The matrix element (95.5) pertains to the emission of a photon with 
the condition that there is no photon of the same type in the initial 
state of the field. If there are already N„ such photons in the initial 

t In this section, ordinary units are used. 

(95.13) dw = In \Vfi\
2 t(Et-Ef-(o) 

The δ-function here expresses the law of conservation of energy: 
the energy of the emitted photon is equal to the decrease in the energy 
of the emitter, ω = E—Ef. The integration of (95.13) with respect to 
ω removes this δ-function, and gives the following final expression 
for the probability of emission of a photon with energy ω = E^Ef 
in a direction in the solid angle do: 

(95.14) 

In this we must substitute the matrix element (95.10). 
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state, the transition matrix element is multiplied by Λ/(ΝΛ+ 1), accord-
ing to (95.4). The transition probability is accordingly multiplied by 
Nn+l. The 1 in this factor corresponds to the spontaneous emission, 
which occurs even if Nn = 0. The term Nn gives rise to the stimulated 
or induced emission: we see that the presence of photons in the initial 
state of the field stimulates the further emission of photons of the same 
kind. 

If the transition i-+f represents the emission of a photon by the 
system as it goes from a level Et to a lower level 2y, the reverse transi-
tion / i will represent the absorption of a similar photon by the 
system as it goes from the level Ef to the level Er The matrix element 
of this reverse transition differs from that of the original transition in 
that the factor (95.4) is replaced by (95.3), i.e. \/(Nn+l) is replaced 
by y/Nn. Hence it follows that the photon emission and absorption 
probabilities (for transitions between a given pair of levels of the radiat-
ing system) are related by 

an expression first derived in 1916 by A. Einstein, who thus predicted 
the phenomenon of stimulated emission. 

The number of photons can be related to the intensity of the external 
radiation incident on the system. Let 

be the radiation energy incident on unit area per unit time and having 
polarisation e, frequency in the range dco, and wave-vector direction 
in the element of solid angle do. These ranges correspond to Qk2 dk do/ 
(2π)3 field oscillators in the volume Ω, each having i\Tke photons of the 
specified polarisation. Hence the same energy (96.2) is given by the 

Welwa=(Nn+l)lN, η » (96.1) 

Ike dco do (96.2) 

Hence we find the required relation 

(96.3) 

22* 
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where / = 2x4nlke is the total spectral intensity of the incident radia-
tion. 

If the states / and / of the emitting (or absorbing) system are de-
generate,1" the total probability of emission (or absorption) of the 
photons concerned is found by summation over all mutually degener-
ate final states and averaging over all possible initial states. Let the 
degrees of degeneracy (the statistical weights) of the states i and / b e 
gi and gf. For processes of spontaneous or induced emission, the states 
i are the initial states, and for absorption the states / . Assuming in 
each case that all gt or gf initial states are equally probable, we ob-
viously have instead of (96.5) the relations 

7t2C2 

gfW(&) = giWdn) = g.w(.sp) L (96.6) 

t This may be, for example, degeneracy with respect to the directions of the 
angular momentum of the radiating atom. 

Let dwk

s^ be the probability of spontaneous emission of a photon 
with polarisation e into the solid angle do, and let the indices (in) and 
(a) denote the corresponding probabilities for induced emission and 
for absorption. According to (96.1) and (96.3) these probabilities are 
related as follows: 

(96.4) 

If the incident radiation is isotropic and unpolarised (7 k e independent 
of the directions of k and e), then the integration of (96.4) with respect 
to do and summation with respect to the polarisation gives similar 
relations between the total probabilities of radiative transitions (be-
tween given states i a n d / o f the system of charges): 

(96.5) 
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§97. Dipole radiation 

A very important case is that where the photon wavelength λ is large 
compared with the dimensions a of the radiating system. This situation 
is generally caused by the particles' having a velocity small compared 
with that of light (cf. Mechanics and Electrodynamics, §82). 

In the first approximation with respect to the small ratio α/λ, we 
can replace the factor e~ikT by unity in the integral (95.11), since it 
varies only slightly over the dimensions of the system, i.e. in the region 
where the functions ipt and tpf are appreciably different from zero. 
This change thus implies that the photon momentum is neglected in 
comparison with the momenta of the particles in the system (the 
photon momentum being hk in ordinary units, and the particle mo-
menta being of the order of /ζ/α). This approximation corresponds to 
the dipole case in classical radiation theory. 

In the same approximation, the integral 

HO) = j vfmpt dV 

may be replaced by the non-relativistic expression, i.e. simply by the 
matrix element of the electron velocity ν with respect to the Schro-
dinger (non-relativistic) wave functions. In turn, the matrix element \ f i 

can be expressed in terms of the corresponding matrix element for the 
electron radius vector: since ν = f, according to (11.8) we have 
y f i = i(Ef—E^xfi. The difference Ef—Ei is equal to the frequency 
ω of the photon emitted, so that 

}fi = yfi = - icoifi = - (ico/e)afi, (97.1) 

where d = ex is the dipole moment of the electron (in its orbital mo-
tion). Substituting (97.1) in (95.10), we find1" 

(97.2) 

t A similar expression exists for the matrix element of the transition with pho-
ton absorption: 

(97.2a) 

This is obtained from (95.6) in exactly the sameVay as (97.2) from (95.5). 



330 Radiation §97 

The direction of the photon wave vector k appears implicitly here, 
since the polarisation vector e must be perpendicular to k. 

The total emission probability is obtained by integrating (97.3) over 
all directions of the photon and summing over its two possible inde-
pendent polarisations. Let e correspond to linear polarisation; then 
e is a real unit vector, and the product e*. dfi is a Cartesian component 
of the vector dyy. Replacing the square Kdy^J2 by its mean value 
yldyyl2, we reduce the subsequent integration over do to a simple 
multiplication by 4π, and the summation over polarisations to a 
multiplication by 2. Thus the total probability of photon emission is 

w = (4 W 3 /3) |d / l |
2 , 

or, in ordinary units, 

w = (4ω 3 /3^) |ΰ/ / | 2 . (97.4) 

The intensity / is found by multiplying the probability by Ηω: 

/ = (4cu 4/3c3)|d / /|
2. (97.5) 

It should be noted that the approximate expression (97.2) for the 
matrix element is the matrix element of the operator 

K = - E . d , (97.6) 

where £ = — dk/dt is the electric field operator and d the electron 
dipole moment operator; (97.2) is obtained from (97.6) in exactly the 
same way as (95.5) from (95.1). The approximate interaction operator 
(97.6) corresponds precisely to the classical non-relativistic expression 
for the potential energy of a system of charges in a quasi-uniform 
electric field (see Mechanics and Electrodynamics, §64). This is an 
important point, in that it allows a wide range of applications of the 
formulae derived in this section; it applies not only to a single-
electron radiator but also to radiation from any non-relativistic system 
of particles. 

Formula (97.5) shows a direct analogy to the classical formula 

and then, using (95.14), we have the following formula for the dipole 
emission* probability: 

(97.3) 
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(Mechanics and Electrodynamics, (82.12)) for the intensity of dipole 
radiation from a system of particles in periodic motion: the intensity 
of radiation with frequency ω = ηω0 (where ω 0 is the frequency of the 
particle motion and η is an integer) is 

/ n - ( 4 c o V 3 c 3 ) | d w | 2 , (97.7) 

where the d„ are the components in the Fourier expansion of the dipole 
moment of the system: 

&(t) = γ dne-i™*'. (97.8) 
n= — o o 

The quantum formula (97.5) is obtained from (97.7) by replacing these 
Fourier components by the matrix elements of the corresponding 
transitions. This rule (which is an expression of Bohr's correspondence 
principle) is a particular case of a general relation between the Fourier 
components of classical quantities and the quantum matrix elements 
in the quasi-classical case (§27). The radiation is quasi-classical for 
transitions between states having large quantum numbers; the photon 
energy hco = E—Ef is then small in comparison with the energies 
Et and Ef of the radiator. But the exact formula (97.5) (which does 
not depend on the assumption of the quasi-classical case) has the 
same form for any value of ω, small or otherwise. This explains the 
fact (which is something of an accident) that the correspondence 
principle for the radiation intensity is valid not only in the quasi-
classical but in the general quantum case. 

§98. Multipole radiation 

Instead of considering the emission of a photon with a given mo-
mentum (i.e. in a given direction), let us now consider the emission 
of photons with definite values of the angular momentum j . This will 
also exhibit the deeper quantum-mechanical significance of the dipole 
approximation. 

For the emission of such photons there are rigorous selection rules 
which follow from the law of conservation of angular momentum: 
the initial angular momentum of the radiating system must be equal 
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to the total angular momentum of the final system and the photon. 
According to the quantum-mechanical rule for the addition of angular 
momenta, this means that, if the initial angular momentum of the 
system is Ji9 after the emission of a photon with angular momentum 
j the angular momentum of the system must have one of the values 

J/ = Ji+j, Jt+j-U . . · , \Ji~Jl (98.1) 

The parities and Pf of the initial and final states of the system 
must also satisfy a certain condition: the initial parity must be the 
same as the total parity of the final system and the photon, i.e. 
P/Pph = Pf, where Pph is the parity of the photon. Since each parity 
must be ± 1, this condition may also be written1" 

P/P/ = P p h . (98.2) 

The angular momentum of the photon takes integral values from 
1 upwards (j = 0 is not possible). For any such value the rules (98.1) 
prohibit the emission of a single photon in a transition of the system 
between two states with J = 0 (0 0 transitions). A radiative transi-
tion between such states can occur only with the simultaneous emis-
sion of two photons having antiparallel angular momenta (but this 
process appears only in higher approximations of perturbation theory, 
and therefore has relatively low probability). 

For the emission of a photon in the 1" state (an El photon in the 
terminology of §78), the selection rules (98.1) and (98.2) allow transi-
tions only between states with opposite parities and with the follow-
ing possible changes of the angular momentum J of the radiator: 

J-+J+1, Λ J-l ( for /5*1) , 

2 2 ' 2 5 u 1 · 

These are the same as the selection rules for the matrix elements of 
a polar vector (§§18, 19). The electric dipole moment d of the system 
is a polar vector, whose matrix elements determine the probability 
(97.4). Hence it is clear that the dipole approximation corresponds to 
the emission of a 1" photon. 

t The parity selection rule was first established by O. Laporte (1924). 

(98.3) 

file:///Ji~Jl
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For the emission of a 1 + photon (Ml photon) the selection rules 
differ from the electric-dipole case only as regards the parity rule: 
the initial and final states must have the same parity. This corresponds 
to the selection rules for the matrix elements of an axial vector. The 
magnetic dipole moment of the system is an axial vector, and its 
matrix elements determine in this case the photon emission probabil-
ity. This is the reason for calling it magnetic dipole radiation. 

Similarly, the emission of any Ej photon is determined by the matrix 
elements of the 27-pole electric moment of the system, and that of an 
Mj photon by those of the 27-pole magnetic moment. 

§99. Radiation from atoms f 

The energies of the outer electrons of an atom (which take part in 
optical radiative transitions) have, as a rough estimate, the order of 
magnitude Ε ~ me*/h2, so that the radiated wavelengths λ ~ he I Ε ~ 
h2lcnme2. The dimension of the atom is a ~h2/me2. Thus, in the 
optical spectra of atoms, we generally have the inequality α/λ ~ α <§: 1. 
The ratio v/c ~ a, where ν is the velocity of the optical electrons, has 
a similar order of magnitude. 

Thus, in the optical spectra of atoms, a condition is satisfied which 
means that the probability of electric dipole radiation (if this is allowed 
by the selection rules) considerably exceeds the probabilities of higher-
order multipole transitions. For this reason it is the El transitions 
that are the most important in atomic spectra.t 

The selection rules for the total angular momentum and the parity 
of the electrons in the atom, stated in §98, are rigorous." Together 

t In this section, ordinary units are used. 

t Typical values of the dipole transition probability in the optical region of ato-
mic spectra are of the order of 10 8 sec" 1. 

II To avoid misunderstanding, it should be noted that the total angular momen-
tum of the atom (denoted by F in §51) consists of the angular momentum of the 
electrons and the spin of the nucleus. The most rigorous selection rules must apply 
to this angular momentum. But, on account of the extremely weak interaction 
of the electrons with the nuclear spin, the effect of the latter on the electron trans-
ition probabilities can be neglected; the selection rules then apply only to the 
electron characteristics of the state of the atom. 
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with these, there may be approximate selection rules whose validity 
depends on certain properties approximately characterising certain 
categories of atomic states. 

Such states are, for example, those based on LS coupling (§51). They 
are characterised by the total angular momentum and also by definite 
values of the orbital angular momentum L and the spin S of the atom, 
which in this case are conserved. Since the electric dipole moment is 
a purely orbital quantity, its operator commutes with the spin opera-
tor, i.e. its matrix is diagonal with respect to the number S. For the 
matrix elements of the dipole moment with respect to the wave func-
tions of the orbital motion of the electrons, there will be selection 
rules for the number L similar to those for any orbital vector (§18). 
Thus transitions between states based on LS coupling are subject to 
the additional selection rules: 

These rules, it may be repeated, are approximate ones, valid only if the 
spin-orbit interaction, which destroys the separate conservation of 
the orbital angular momentum and the spin, is neglected. 

In the classical theory, the order of magnitude of the magnetic 
moment of the system (defined as in Mechanics and Electrodynamics, 
(66.2)) is related to that of its dipole moment by μ ~ (v/c)d. A similar 
relation exists for the quantum-theory atom: the magnetic moment is 
of the order of the Bohr magneton, μ ~ eh/mc, which differs by a 
factor α from that of the dipole moment d ~ ea ~ h2/me; since 
v/c ~ a, this gives the above relation between μ and d. 

The probability of magnetic dipole (Ml) radiation is proportional 
to the square of the magnetic moment, and is therefore less, by a factor 
of approximately a 2, than the probability of electric dipole radiation 
at the same frequency. The magnetic radiation is therefore of practical 
importance only for transitions forbidden by the selection rules for 
the electric case. 

The same is true of the electric quadrupole (£2)Vadiation. The order 
of magnitude of the electric quadrupole moment of the atom is ea2. 

Sf — Si, 

Lf = Li+l, Lh Li-1 
(99.1) 
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This contains a further factor a in comparison with the dipole mo-
ment d ~ ea. Accordingly, the matrix element of the quadrupole 
radiation transition contains an extra factor ka ~ α/λ in comparison 
with that of the dipole transition; with the orders of magnitude of 
a and λ stated above, this is again the small factor ~ a. 

However, the different origin of this factor for Ml and E2 radia-
tion (from v/c and α/λ respectively) has the result that under certain 
conditions the Ml radiation may be more probable than the E2 radia-
tion (if both are allowed by the selection rules, of course). The ratio 
of their probabilities is 

where Ε ~ vh/a is the energy of the atom and AE = ha> is the change 
in this energy in the transition. We see that the ratio is of the order 
of unity if AE ~ E9 but may be small if AE « E. 

In particular, such a case occurs for transitions between hyperfine-
structure components of the same level (the frequencies of such tran-
sitions are in the radio range). They cannot occur as electric dipole 
transitions, since the components of the hyperfine structure differ only 
in the sum of the electron and nuclear angular momenta, and there-
fore have the same parity. The E2 and Ml transitions take place 
without change of parity. But, because the intervals in the hyperfine 
structure are relatively very small, the E2 radiation has low probabil-
ity in comparison with Ml , so that these transitions occur as magnetic 
dipole transitions. 

The collision of two charged particles is in general accompanied 
by the emission of photons (called bremsstrahlung). The possible values 
of the photon frequency form a continuous range from zero up to the 
total kinetic energy of the relative motion of the colliding particles. 
Let us consider some of the properties of this radiation in the limit-
ing case of low frequencies. 

§100. The infra-red catastrophe 
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When the photon energy hoo 0, the quantum-mechanical formulae 
must become the classical ones. Here, of course, the discussion must 
relate to the calculation of properties of the radiation that are for-
mulated independently of the concept of the photon, such as the total 
radiation intensity, i.e. the total energy lost by the colliding particles 
in radiation. 

According to the classical theory, the spectral distribution of the 
bremsstrahlung energy tends, as ω-*0, to an expression of the form 

where the constant is independent of ω; see Mechanics and Electro-
dynamics, §82, Problem 4, which dealt with a non-relativistic collision 
between two particles having different values of the charge/mass 
ratio. 

Although, according to the previous discussion, this limiting form 
remains valid in the quantum theory, it has another aspect there. 
The radiation is described not only by its total energy but by the 
number of photons emitted. The number of photons with frequencies 
in the range dco is found by dividing d<5 by hco, and in the same 
limiting case we therefore have 

The total number of photons emitted is obtained on integrating 
dN/άω with respect to ω. We see that the integral is (logarithmically) 
divergent at the lower limit (ω = 0). In the other words, infinitely 
many photons with infinitesimal energies are emitted. This is referred 
to as the infra-red catastrophe. 

We must emphasise that the divergence represents an actual phys-
ical situation, and is not related to the fictitious divergences that result 
from the imperfections of the existing theory. The occurrence of the 
infra-red divergence is due to the zero mass of the photon, in con-
sequence of which its energy can be arbitrarily small. 

Although photons of infinitesimal frequency are not observable in 
practice, the infra-red divergence is of fundamental significance. Strict-
ly speaking, any collision of charged particles is accompanied by the 

d& = constant Xdco, (100.1) 

dN = constant Xdco/ω. (100.2) 
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emission of an infinite number of soft quanta; the probability of a 
collision with the emission of no photons or of a finite number of 
photons is zero. In this sense, we can say that a collision of charged 
particles cannot be strictly elastic. In an exact calculation of the total 
probability of such collisions, the spectrum of the emitted photons 
has to be "cut off", and we must agree to regard as "elastic" those 
cases where photons are emitted with frequencies not exceeding a 
small but finite limit. 

P R O B L E M 1 

Determine the cross-section for bremsstrahlung emission when an electron passes 
through the field of a fixed nucleus with charge +Ze. It is assumed that ν <c c but 
Ze2lhv « 1, Ze2jhv' <z 1, where ν and v' are the initial and final velocities of the 
electron; these latter inequalities are the conditions for the validity of the Born 
approximation, in which the influence of the field on the wave functions of the 
electron before and after the collision is neglected. 

SOLUTION. In accordance with (97.4), the cross-section for collisions in which a 
photon with energy hu> is emitted and the electron acquires a momentum p' = mv' 
in the element of solid angle do' is 

t Ordinary units are used. 

(1) 

The additional factor d3p = p'1 dp' do' occurs because the final state (a free electron 
with momentum p') belongs to the continuous spectrum. The change from the pro-
bability in (97.4) to the cross-section is made by using the appropriate normalisation 
of the wave function of the initial electron to unit current density: 

(2) 

where ρ = my; cf. (21.6). The wave function of the final electron is a plane wave 
normalised by the ό-function in momentum space: 

( 3 ) 

The frequency of the emitted photon is related to ρ and p' by the conservation of 
energy: 

(4) 



The infra-red catastrophe corresponds to the divergence of this expression as 
ω 0. 

§101. Scattering of radiation 

The scattering of a photon by an atom consists of the absorption 
of the initial photon (with momentum k) and the simultaneous emis-
sion of another photon (k'). The atom may be left either at its initial 
energy level or at some other. In the former case the photon frequency 
is unchanged (Rayleigh scattering); in the latter case the frequency 
changes by 

ω ' - ω =Ei-Ef, (101.1) 

where Et and Ef are the initial and final energies of the atom (Raman 
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m(r)fi = - 7 w c o 2 r / i = ZeH 

The matrix element on the right, with respect to the functions (2) and (3), becomes 
the Fourier component 

and after the integration with respect to Θ we have finally 

(V- y>\* = v2+v'2-2w' cos 0, do' = 2π sin Θ άθ, 

To integrate over the directions of v ' , we write 

where hq = p ' ~ ρ and we have used formula (68.6). Then formula (1) gives 

The matrix element of the electron dipole moment d = er in its motion relative 
to the centre of the field must, however, be calculated by means of the equation of 
motion in the field: 

mi = v(Ze2/r) 

and not directly from the functions (2) and (3). In quantum mechanics, the equation 
of motion is to be regarded as a relation between the corresponding operators 
(cf. (21.2)). Taking the matrix elements of these operators, we find 
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scattering). If the atom was initially in the ground state, the frequency 
can only decrease. In scattering by an excited atom, however, the final 
level may be either higher or lower, so that Raman scattering may 
either decrease or increase the frequency. 

Since the electromagnetic interaction operator has no matrix ele-
ments for transitions in which two photon occupation numbers si-
multaneously change, the scattering effect appears only in the second 
approximation of perturbation theory. It must be regarded as taking 
place via certain intermediate states, which may be of one of two 
types: 

(I) The photon k is absorbed and the atom goes from the initial 
level Et to one of its other possible levels En\ in the subsequent 
transition to the final state, the photon k' is emitted; 

(II) The photon k' is emitted and the atom enters the state En, and 
in the transition to the final state, the photon k is absorbed. 

According to (36.2), the matrix element for this process is represent-
ed by the sum 

Here St = Ε^ω is the initial energy of the atom+photon system, 
and £l and &n

l are the energies of the two intermediate states: 

Vni and Vfn are the matrix elements of the transitions with absorption, 
and Vfn and V'ni those of the transitions with emission; the initial 
state of the atom is excluded from the summation over «, this being 
indicated by the prime to the summation sign. 

Our problem is to calculate the cross-section of the scattering pro-
cess. This can be done by means of the same formula (95.14) as was 
used previously to calculate the probability of spontaneous emission: 
the only difference is that the "radiator" emitting the photon ω' is 
now not an isolated atom but a system comprising the atom and the 
incident photon ω. The cross-section is obtained from the probability 

(101.2) 

on — En , on — En 
Εη+ω+ω'; 
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by simply dividing the probability by the current density of the photons 
incident on the atom. The wave function of the photon, normalised 
to one photon in the volume β , corresponds to a current density 
c/Ω, the product of the velocity c and the photon number density 
1/Ω. In relativistic units c = 1, and the cross-section is therefore 
calculated from the formula 

where the scattering amplitude is 

ficoni = En-Ei, hconf = En-Ef; 

(101.5) 

this formula is due to H. A. Kramers and W. Heisenberg (1925). 
The summation over η is taken over all possible states of the atom, 

t Here and below, ordinary units are used. 

(101.3) 

where do' is the element of solid angle for the directions of the scattered 
photon. 

We shall assume that the wavelengths of the initial and final photons 
are large compared with the dimensions of the scattering atom. Then 
the dipole approximation can be used for the matrix elements of all 
transitions. According to (97.2) and (97.2a), 

and similarly for V'ni and Vfn (e and e' being the polarisation vectors 
of the photons ω and ω'). 

Substituting these expressions in (101.2) and thence in (101.3), we 
have the scattering cross-sectiont 

(101.4) 
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including those of the continuous spectrum (the states i and / cannot 
appear in the sum, since the diagonal matrix elements d l7 and dff are 
zero; see§54). f 

It is easily seen that the scattering amplitude is zero except for 
transitions between states of the same parity (including coincident 
states ι a n d / ) : the matrix elements of the vector d are zero except for 
transitions between states of different parity; the parities of the states 
i and / must therefore be both opposite to that of a state η which is 
the same in each term in the sum (101.5), and so they must be equal 
to each other. This is contrary to the parity selection rule for electric 
dipole radiation; thus there is an "alternative prohibition", whereby 
transitions allowed for emission are forbidden for scattering, and 
vice versa. 

When ω 0, the scattering amplitude tends to a finite limit. The 
cross-section for Rayleigh scattering (ω' = ω) is therefore proportional 
to ω 4 when ω is small. 

In the opposite case, when the frequency ω is large compared with 
all the frequencies ωΛΙ·, ω η ί which are important in the sum (101.5) 
(but of course the wavelength is still much greater than the dimensions 
of the atom), we must arrive at the formulae of the classical theory. 
The calculation of the first non-vanishing term in the expansion of 
(101.5) in powers of l/ω (which will not be given in detail here) leads 
to the scattering cross-section 

da = 2?(e*\mc*f | e'* . e\* do', (101.6) 

where Ζ is the number of electrons in the atom. Summation of (101.6) 
over the polarisations e' of the scattered photon gives the classical 
Thomson's formula (Mechanics and Electrodynamics, (86.10)). 

Let us consider the scattering of radiation by an assembly of Ν 
identical atoms situated in a region small compared with the wave-
length. The scattering amplitude for such an assembly is equal to 
the sum of the amplitudes for the individual atoms. It must, however, 

t Formulae (101.4) and (101.5) are not applicable to the case of resonance, when 
the frequency ω is close to either ω η < or ω / η . In this case (called resonance fluores-
cence), the natural width of the spectral lines has to be taken into account (§102). 
23 
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be remembered that the wave functions (which are used to calculate 
the dipole moment matrix elements) for several identical atoms taken 
together are not simply equal functions. The wave functions are essenti-
ally defined only to within an arbitrary phase factor, which is differ-
ent for each atom. The scattering cross-section has to be averaged over 
the phase factor of each atom separately. 

The scattering amplitude Afi of each atom includes a factor βΚΦί~φ}\ 
where φί and φ/ are the phases of the wave functions of the 
initial and final states. For Raman scattering, the states / and / are 
different, and this factor is not equal to unity. In the squared modulus 
\EAfi\

2, which determines the scattering cross-section (the sum being 
over all Ν atoms), the products of terms pertaining to different atoms 
will include phase factors which vanish on averaging over the phases 
of the atoms, and only the squared modulus of each term remains. 
This means that the total cross-section for scattering by Ν atoms is 
found by taking Ν times the cross-section for scattering by one atom : 
the scattering cross-sections are added, not the scattering amplitudes. 
In this case the scattering is said to be incoherent. 

If, however, the initial and final states of the atom are the same, 
then the factors βί(Φί~φ^ = 1. The scattering amplitude is then Ν times 
the scattering amplitude for one atom, and the scattering cross-section 
consequently differs by a factor N2. In this case the scattering is said 
to be coherent. 

Coherent scattering is certainly of the Rayleigh type, but the con-
verse statement is not necessarily true. Rayleigh scattering is entirely 
coherent only if the scattering atom is at a non-degenerate energy 
level. If the energy level is degenerate, there will also be incoherent 
Rayleigh scattering arising from transitions of the atom between 
various mutually degenerate states. It must be emphasised that the 
incoherence of Rayleigh scattering is a purely quantum effect; in the 
classical theory, scattering without change of frequency is necessarily 
coherent, and the concept of coherent scattering has been defined in 
this way in Mechanics and Electrodynamics, §86. 
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§102. Natural width of spectral lines 

So far, in the study of emission and scattering of radiation, we have 
regarded all the levels of the system (an atom, say) as being strictly 
discrete. But in fact excited levels have a certain probability of emis-
sion, and therefore a finite lifetime. This has the result that the levels 
become quasi-discrete, with a certain small but finite width; they can 
be written in the form E— \W, where Γ (Tjh in ordinary units) is the 
probability (per unit time) of all possible processes of "decay" of the 
state concerned (§38).t 

Let us consider how this situation affects the process of emission. 
It is evident that, because of the finite width of the level, the emitted 
radiation will not be strictly monochromatic: its frequencies will be 
spread over a range Δω ~ Γ. But, in order to measure the frequency 
distribution of the photons with this accuracy, the time needed is 
T^> 1/Δω ~ 1/Γ. During this time the level will almost certainly 
decay by emission. We therefore have to deal with the total probabil-
ity of emission of a photon of a given frequency, not with the prob-
ability per unit time. We shall calculate this total probability, first of 
all, for a transition of an atom from some excited level 2£f —Ι/.Γ, to the 
ground level (Ef), which has an infinite lifetime and is therefore strictly 
discrete. To simplify the analysis, we shall assume that this transition 
is the only means of emission from the excited level concerned. 

Let us return to the derivation in §35 of the formula (35.6) for the 
transition probability (used in §95 to calculate the emission probabil-
ity). The function afi(t) was considered for large values of t, and the 
ratio \afi\

2/t gave the required transition probability per unit time. 
We can now refine the significance of this procedure: it relates to 
times short compared with the lifetime of the excited level, "large 
values of f" here meaning times long compared with the period 
lfcEi—Ef) but still small compared with 1/Γ. For this reason it was 
possible to neglect the finite width of the level. Now that we have to 
consider times comparable with 1/Γ, the width of the excited level 
cannot be neglected. 

t The radiation width of the levels is in practice very small. For example, a 
decay probability w ~ 10 8 - 1 0 9 s e c - 1 corresponds to a width Γ ^ ΐο~ 6 - 1 0 - 7 eV. 

23* 
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The required transition probability (over all time) is given by the 
limit of I afi{t) | 2 as t o o . For the emission of a photon with frequency 
in the range dco and direction in the solid angle do, it is 

dW=laf,i^^^, (102.2) 

where Ω is, as in (95.13), the normalisation volume for the photon 
wave function. Substituting (102.1), we obtain 

To find the spectral distribution of the emission probability, we 
integrate this over the directions of the photon. According to (95.14), 

The integration of this expression over all frequencies from -«> to 
- f o o gives unity, in accordance with the fact that the atom will 
certainly emit a photon of some frequency during an infinite time. 

Formula (102.3) determines what is called the shape of the spectral 
line, i.e. the distribution of the intensity over the width of a line. The 
shape given by (102.3) is that for an isolated atom, and is called the 
natural shape of the line.1" 

t As distinct from the broadening caused by the interaction of the atom with 
other atoms (collision broadening) or by the presence of atoms in the source which 
move with various velocities (Doppler broadening). 

In the emission problem, the atom+photons system is concerned; 
accordingly, the transition frequency cofi in (35.2) becomes Ε^ω—Ε^ 
Writing the initial level in the form Ε—\ϊΓ^ we have 

(102.1) 

where w is the total emission probability per unit time, which by de-
finition is equal to JT... Thus we have, finally, 

(102.3) 
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F E Y N M A N D I A G R A M S 

§103. The scattering matrix 

It has already been mentioned in §75 that a typically stated problem 
in relativistic quantum theory is to determine the probability ampli-
tudes of various scattering processes (transitions between different states 
of a system of free particles). This problem may be regarded as now 
solved in principle within the terms of quantum electrodynamics, i.e. 
for processes governed by the electromagnetic interaction. The weak-
ness of this interaction (which is expressed by the smallness of the 
fine-structure constant a) enables us to treat such processes by means 
of perturbation theory. In its usual form (as applied in non-relativistic 
quantum mechanics), the formalism of perturbation theory has the 
disadvantage that it does not display explicitly the requirements of 
relativistic invariance. This disadvantage is removed in a consistent 
relativistic perturbation theory due to R. P. Feynman (1948). The 
formalism of this theory allows a very great simplification of calcula-
tions which might indeed be impracticable with the ordinary perturba-
tion theory. It also make possible an unambiguous elimination of the 
divergences (already mentioned in §75) that occur in the calculations.1" 

We shall first of all show how the most general expression for the 
scattering amplitudes of arbitrary processes can be derived. 

t The discussion in this chapter is intended to give only an understanding of the 
basic ideas of the theory, and of the origin and significance of the concepts and 
quantities that appear in it. The necessary calculations are therefore not given in 
their entirety; only their general outline is indicated, in order to elucidate the under-
lying ideas. 

345 
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With a view to the second-quantised description of the system of 
particles, we shall use a wave function of the system in which the 
independent variables are the occupation numbers of the states of 
free particles; let this function be denoted by Φ to distinguish it 
clearly from the ordinary coordinate wave functions. The Hamiltonian 
of the system may be written as Η = i/o-f- Ϋ9 where H0 is the Ha-
miltonian of the free particles and Ϋ is the electromagnetic interaction 
operator. The function Φ satisfies the wave equation 

i^Φ/^t = (Ηο+ΐ)Φ, (103.1) 

where the ordinary (Schrodinger) representation of the operators and 
wave functions is used: the operators are independent of time, and 
the time variation of the system is described by the time dependence 
of the wave function. 

It has been mentioned in §76 that another treatment of the formalism 
of quantum mechanics is also possible, in which the explicit time 
dependence is transferred from the wave functions to the operators; 
in this (Heisenberg) representation, the wave functions are independ-
ent of time. For the problem at present under consideration, however, 
the most suitable representation is an "intermediate" one, in which 
not the whole time dependence is transferred to the operators, but 
only the part that corresponds to the state of a system of free part-
icles. In this representation (called the interaction representation), there-
fore, the wave function is time-dependent, but this dependence is 
entirely due to the action of the perturbation, i.e. corresponds just to 
the relevant scattering processes, which are due to the interaction of 
the particles. 

Accordingly, the wave equation for the function Φ in the interaction 
representation is 

= Ϋ(ί)Φ, (103.2) 

which differs from (103.1) by the absence of H0 on the right-hand 
side. In the operator Ϋ, the argument t is shown in order to emphasise 
that in this representation it is time-dependent, unlike the time-inde-
pendent Schrodinger operator Ϋ in (103.1). 
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If Φ(ί) and 0(t+df) are the values of Φ at two successive instants, 
(103.2) shows that 

φ( ί+ δί) = [1 - 1 dt. Φ(0, 

or, to the same accuracy, Φ(ί+δί) = exp [—ibt. Ϋ(ί)]Φ(ί). Applying 
this formula to successive time intervals btn from / = — oo to / = + °o, 
we can express the final value Φ(+ °°) in terms of the initial value 
φ(—oo). Denoting by § the operator that relates these values, we 
have Φ(+ oo) = §φ(- oo), where 

§ = Y[cxp[-idtn.Y(tn)l (103.3) 
η 

and the symbol Π denotes the limit of the product over all the inter-
vals ό7Λ. If V(t) were an ordinary function, this limit would reduce 
simply to 

but this result depends on the commutativity of the factors pertaining 
to different instants, which is assumed in changing from the product 
in (103.3) to the summation in the exponent. For the operator Y{t) 
there is in general no such commutativity and the reduction to an 
ordinary integral is not possible. 

We can write (103.3) in the symbolic form 

(103.4) 

where Τ is the chronological operator, implying a certain "chronolog-
ical" sequence of time instants in the successive factors of the product 
(103.3). This notation in itself is, of course, no more than symbolic, 
but it allows a simple derivation of the series expansion of § in pow-
ers of the perturbation: 

(103.5) 
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Here, in each term, the A:th power of the integral is written as a &-fold 
integral, and the operator f signifies that in each range of values of 
the variables tl9 t2, ..., tk the factors Y(t^9 Y(t2\ . . ·, P(tk) must be 
put in chronological order, with the value of / increasing from right 
to left. Since the time-ordering operation now relates simply to a 
product (and not to an exponential as in (103.4)), the expression for 
each term in the sum (103.5) is not merely symbolic, but has real 
significance. 

It is clear from the definition of the operator § that, if the system 
was in the state Φζ (an assembly of free particles) before the collision, 
the probability amplitude for its transition to the state Of (another 
assembly of free particles) is the matrix element Sfi. For, according 
to the definition of the matrix elements of an operator, the function 
Φ(«>) = §φ. can be written as the expansion 

(cf. (11.11)); \Sfi\
2 is therefore the probability that the system is in 

the final state 0fast -+°o (i.e. after the interaction). The operator § is 
called the scattering operator, and its matrix elements form the scatter-
ing matrix or S-matrix (a term already mentioned in §75). The non-
diagonal (/ y£ f) elements of this matrix are the amplitudes of the 
scattering processes i -*• 

To arrive at a fully specific meaning for formula (103.5), we have 
still to establish the general form of the interaction operator Y(t\ so 
as to include all possible electrodynamic processes. This is easily done 
by a direct generalisation of the formulae already given in §95, where 
second quantisation was applied only to the electromagnetic field 
represented by the operator A in (95.1). We now have to carry out 
this process for the electron-positron field also. This is done by simply 
substituting the appropriate ^-operators for the electron wave func-
tions in the matrix elements (95.5), (95.6). Thus we obtain the ex-
pression 

Y(i) =-β$}.λ&χ, (103.6) 

t The derivation of the rules of relativistic perturbation theory by means of 
the expansion (103.5) is due to F. J. Dyson. 
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where j = Ψ*αΨ is the second-quantised particle current density 
operator and d3x = dx dy dz is the volume element. 

In (103.6) we have the three-dimensional vectors j and A, on account 
of the particular choice of gauge used hitherto for the field potentials, 
namely that in which the scalar potential is zero. In order to derive 
relativistically invariant expressions, we must now use the four-di-
mensional notation 

Y(t) = β$3*Αμά*χ9 (103.7) 

where f = Ψ^Ψ is the current density four-vector operator and Αμ is 
the four-potential operator without any predetermined choice of gauge; 
when Αμ = (0, A), (103.7) becomes (103.6). The form of the operator 
Αμ differs from (76.15) only in that the photon polarisation vector e 
is replaced by a unit four-vector βμ (which reduces to (0, e) only in 
a particular gauge) 

(103.8) 

The Ψ-operators are expressed in terms of the electron and positron 
creation and annihilation operators by formulae (85.3). They may be 
written 

Ρ = Σ(άΡΨΡ+ΚΨ-ρ), Ψ = Σ{ά;ψρ+$,Ψ-ρ), (103.9) 
Ρ Ρ 

where the functions Ψρ are plane waves with four-momenta p: 

Ψρ = (11Λ/Ω) u(p)e-^ . (103.10) 

* For brevity, the indices denoting the polarisation of the particles are every-
where omitted. In this chapter, we shall frequently use the conventional notation 
of light-face letters for four-vectors without the indices μ, ν, . . . that label their 
components. For example, χ and ρ denote the four-vectors χμ = (t, r) and ρμ = 
(ε, ρ). The scalar products of four-vectors are likewise written without indices. 
For instance, (px) = ρμχ

μ = εΐ— p.r; the equation ρμρ^ = m2 for the four-moment-
um of a particle with mass m is written p2 — m2, the equation = 0 for the 
four-momentum of a photon is written k2 = 0, and so on. This notation is often 
used in recent literature. It is a compromise between the limited resources of the 
alphabet and the demands of physics, and means, of course, that the reader must 
be more than usually attentive. 



350 Feynman Diagrams §104 

It should be noted that the time dependence of the operators (103.8) 
and (103.9), and therefore that of the interaction operator (103.7), 
have been transferred to them from the wave functions of free motion 
of particles (plane waves). Thus these operators are in fact in the re-
quired interaction representation. 

§104. Feynman diagrams 

The procedure for calculating the elements of the scattering matrix 
can be illustrated by means of some specific examples. Let us consider 
processes occurring in the second approximation of perturbation 
theory. These correspond to the second-order term (k = 2) in (103.5). 
Substituting for Ϋ, we can write this term as 

gm = _ 1^2 D 4 X &x>f{Xx) Αμ(χ)Κχ') Λ(*')Κ (104.1) 

where d 4x = dt dsx is the four-volume element. This formula is re-

lativistically invariant: the products (jA) are four-scalars, and the 

integration over the four-volume is a scalar operation.1" 
As a first example, let us take the elastic scattering of two electrons: 

in the initial state there are two electrons with four-momenta p± and 
p2, and in the final state there are two electrons with other four-
momenta p3 and /?4. Since the photon and electron operators act on 
different variables (the photon and electron occupation numbers), their 
matrix elements can be calculated independently. In the present case, 
there are no photons in the initial and final states, and so the appro-
priate matrix element with respect to the photon operators Αμ(χ) Αν(χ') 
is the diagonal element (01 . . . | 0), where the symbol | 0) denotes the 
state of the electromagnetic field without photons (the photon vacuum 
state). This matrix element is a certain function of the four-coordinates 
χ and x\ Because of the homogeneity of space and time, this function 
can depend only on the space and time intervals r—r' and t—t\ i.e. 
only on the difference x—x\ and not on the values of χ and x' sepa-

t We shall not pause here to prove that the relativistic invariance is also un-
affected by the operation of time-ordering. 
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rately. Thus we arrive one of the fundamental new concepts of this 
theory, the photon propagation function or photon propagator, defined 
as 

(ί(0\Αμ(χ)Αν(χ')\0) f o r / ' < / , 1 
Όμν{χ~χ,)=\ιφ\Αν(χ')Αμ(χ)\0) for t^t;f ( 1 ° 4 2 ) 

the different order of the factors for f < / and t < t' is due to the 

action of the operator T in (104.1). 
Let us next consider the electron operators in (104.1). Each of the 

two current operators is a product j = ΨγΨ, and each of the Ψ-
operators is given by the sum (103.9). Hence the product]μ(χ)Τ(χ') is 
a sum of terms, each containing a product of four of the operators 
Op, άρ, 5 P , 6jJ". A non-zero contribution to the matrix element in ques-
tion comes from the terms in which the operators annihilate the initial 
electrons pl9 p2 and create the final electrons /?3 and /?4. Thus the terms 
required are those containing a product of the operators άΡι, a P 2 , 0 + , 
aPt. The calculation based on this gives the result 

S/t = ie* jj d*x d V Ώμν(χ-χ'){{Ψ^Ψ2) (Ψίγ'Ψί) 

-(Ψ^Ψ^ίΨ'ζγ'Ψ'ζ)}, (104.3) 

where Ψχ = ΨΡι(χ\ Ψί = ΨΡι(χ'\ etc. 
The electron wave functions are the plane waves (103.10). Hence, 

for example, the first term in the braces in (104.3) contains the ex-
ponential factor 

exp {-i[(p2-pi)x]-i[(px-pz)x']}-

From the conservation of four-momentum in the collision ρ\+Ρι = 

= PS+PA, or p2~Pi = P3—P1. This factor thus becomes 

exp {i[(p±-p2)(x-x')}} 

and the integration over ά\χ—x') in (104.3) corresponds to taking the 
component corresponding to the four-momentum k = pi—p2 in the 
expansion of the function D (χ—χ') as a four-dimensional Fourier 
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integral corresponding to k = p^—p2. The function 

DMV(k) = J j D ^ j c - y y W ' - ^ d ^ J C - x ' ) (104.4) 

is called the photon propagator in the momentum representation. 
The second term in (104.3) is transformed similarly, and the result is 

Sfl ~ e 2(w 4y^ 2) (104.5) 

where | k = P\—p<i, k' = ρ±—ρ\ϊ The two terms in this scattering 
amplitude can be symbolically represented by what are called Feyn-
man diagrams (Fig. 14). Each point of intersection of lines (a vertex of 

FIG. 1 4 

the diagram) has a corresponding factor βγμ. The "incoming" con-
tinuous lines towards a vertex represent the initial electrons, which 
are associated with the factors w, the bispinor amplitudes of the cor-
responding electron states. The "outgoing" continuous lines leaving 
a vertex are the final electrons, and correspond to the factor u. When 
the diagram is "read", these factors are written from left to right in 
the order of movement along the continuous lines against the direction 
of the arrows. The two vertices are joined by a broken line which 
represents a virtual (intermediate) photon "emitted" at one vertex 
and "absorbed" at the other, and corresponds to the factor D^k). 
The four-momentum of the virtual photon (k or k') is determined by 
the "conservation of four-momentum" at the vertex; the total mo-

t We are here concerned only with the mathematical structure of the 5-matrix 
elements, and therefore omit all irrelevant common factors. We shall also pass over 
the question of how | Sfi\

2 is converted into an observable quantity, the scattering 
cross-section. 
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menta of the incoming and outgoing lines are equal. The lines cor-
responding to the initial and final particles are called external lines 
or free ends of the diagram. The two diagrams in Fig. 14 differ by the 
interchange of two such lines. 

The square of the virtual photon four-momentum, k2 = k ^ , is 
not zero, as it would have to be for a real photon. Moreover, the 
description of the process (in accordance with the form of the dia-
grams) as the emission of a virtual photon followed by its absorption 
has, of course, no literal significance; it is merely a convenient way 
of describing in words the structure of the expressions that occur in 
the scattering amplitude. 

Let us now consider the scattering of an electron and a positron. 
Their initial and final four-momenta will be denoted by /?_, /?+; 
p_, p'+. The appropriate changes in the diagrams are clear from the 
structure of the iF-operators (103.9): the positron creation and an-
nihilation operators appear in these expressions together with the 
electron annihilation and creation operators respectively, and with 
coefficients ϋ(—ρ) and w(—p) instead of u(p) and ϋ(ρ). Thus the dia-
grams in Fig. 14 are replaced by those in Fig. 15. The rules for con-
structing the diagrams are modified only as regards the positrons. As 

before, the incoming continuous lines are associated with the factors 
w, and the outgoing ones with u. But the incoming lines now corre-
spond to the final positrons and the outgoing ones to the initial po-
sitrons, the four-momenta of all the positrons being taken with re-
versed sign. The two diagrams in Fig. 15 differ: one has the same 
structure as those in Fig. 14, with the initial and final electron lines 

pi P -

FIG. 1 5 
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meeting at one vertex and the positron lines meeting at the other 
(a "scattering" type diagram), but in the second diagram initial or 
final electron and positron lines meet at each vertex; the pair is, as 
it were, annihilated at the upper vertex with the emission of a virtual 
photon and produced from this photon at the lower vertex (an "an-
nihilation" type diagram). 

Let us now consider another second-order effect, the scattering of 
a photon by an electron (the Compton effect). In the initial state let 
the photon and the electron have four-momenta k± and pl9 and in 
the final state k2 and p2. 

In the corresponding element of the S-matrix, the operators Λμ(χ) 
Λν(χ') in (104.1) annihilate the photon k± and create the photon k2 

(by virtue of the operators c k i and c£2 in them). The annihilation of 
the electron px and the creation of the electron p2 is due to one of the 

two pairs of operators Ψ and Ψ (by virtue of the operators άΡι and 
a+). As regards the second pair of Ψ-operators in (104.1), there then 
remains the diagonal matrix element <0| . . . |0), where the symbol |0) 
now denotes the electron-positron vacuum state—a field without par-
ticles. Thus we arrive at a second fundamental concept of the theory, 
the electron propagation function or electron propagator, defined as 

Here / and k are bispinor indices, so that Gik is a bispinor of rank two. 
The scattering amplitude is found to be 

Sfi ~ e*u2(e*2y) G(p) (eiy}ui+ e2u2(eiy) G(p') (ejy)i/i, (104.7) 

where ρ = p' = p\—k2\ e\ and e2 are the polarisation four-
vectors of the initial and final photons1"; G(p) and G(p') are the electron 
propagators in the momentum representation. 

Gik(x-x') = 
i <0 | Ψίχ) Wk(x') 10) for f < t, 

Ι{0\ΨΗ(Χ?)ΨΑΧ)\0) for / < f . 
(104.6) 

t The notation for the polarisation four-vectors should not be confused with 
the charge e whose square appears as a coefficient in (104.7). 



§104 Feynman diagrams 355 

The two terms in this expression are represented by the Feynman 
diagrams in Fig. 16. The broken external lines correspond to real 
photons; the incoming lines (initial photons) are associated with the 
(four-vector) factor el9 and the outgoing lines (final photons) with el. 
The continuous internal line joining the two vertices corresponds to 
a virtual electron, with the factor G(p). The four-momentum of this 
virtual electron (p or p') is determined by the conservation of four-
momentum at the vertices; its square in not equal to ra2 as it would 
have to be for a real electron. 

k 2 k j kj kg 

\ / \ / 

P2

 Pl P 2 P. 

FIG. 1 6 

In the same way as the electron-positron scattering diagrams were 
obtained by changing the nature of the external electron lines in Fig. 14, 
we can get from Fig. 16 the diagrams that describe another process, 
the annihilation of an electron p_ and a positron p+ to form two 
photons k\ and k2 (Fig. 17). 

\ Λ \ / · 

\ / \ / 

. / ~ \ 
- P + N p _ - P + > p _ 

FIG. 1 7 

The rules given here for specific examples form the basis of what 
is called the diagram technique, which can be used to construct the 
amplitudes of various electrodynamic processes. The amplitude of a 
scattering process that occurs in the nth approximation of perturba-
tion theory is represented by the set of all diagrams containing η ver-
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tices and the same number of external lines as there are initial and 
final particles concerned in the process. Three lines meet at each 
vertex: one photon line and two electron lines (one incoming and one 
outgoing). 

k 
I 

• Pi 

-L P2 

FIG. 1 8 

For example, the three-vertex diagram in Fig. 18 is one of the eight 
diagrams that correspond (in the third order of perturbation theory) 
to the emission of a photon k in the collision of electrons with four-
momenta pi and p2 (and /? 3, p± after the collision). In this diagram, 
the photon k is emitted by one of the final electrons; in the other 
diagrams, it is emitted by the other electrons (and also p$ and ρ± may 
be interchanged). 

ka„ .k ο 

p - k 4 

/ 

p - k 2 

FIG. 1 9 

The fourth-order diagram in Fig. 19 is one of six which describe 
photon-photon scattering; the other five differ from it by interchanges 
of the four photon lines.1" In comparison with the earlier diagrams, 

t Photon-photon scattering is a specifically quantum-electrodynamic process; 
in classical electrodynamics it does not occur, because Maxwell's equations are 
linear. The existence of this effect indicates that quantum phenomena bring about 
small non-linear terms in Maxwell's equations. 

p 4 — 
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Fig. 19 has the feature that the conservation of four-momentum at its 
vertices (for given initial kl9 k2 and final A:3, k^) does not uniquely 
determine the four-momenta of the virtual electrons (the internal 
continuous lines in the diagram); one of them can be assigned an 
arbitrary value p. Then the expression obtained from the diagram 
must also be integrated over all values of the components of the four-
vector p. 

The concept of the propagators plays a fundamental role in the 
formalism of quantum electrodynamics. They need to be calculated 
once and for all, in order to determine the actual scattering amplitudes. 
This calculation is based on the following important mathematical 
property of the propagators. 

The operator Ψ(χ) satisfies Dirac's equation [(ργ)—m] Ψ(χ) = 0, 
since each of the wave functions Ψρ in the expansion (103.9) does so. 
Hence the function G(x—x') (in whose definition Ψ(χ) appears ac-
cording to (104.6)) is reduced to zero by the operator (yp)—m at all 
points χ except those where / = The reason is that, according to 
the definition (104.6), the function G(x—x') tends to different limits 
as t tends to /' from above and from below (t f'+O and t t'—O). 
A calculation of the difference between the limits leads to the simple 
result that G has a discontinuity at t = f given by 

AG ξ [G]t^t>+o—[G]t^t'-o 

= -ίγ°δ(τ-τ'). 

But, if the function G(t—1\ r—r') has a discontinuity AG at t — t' = 0 , 
this means that its derivative dG/dt has a δ-function term AG · d(t— t')? 
In the operator (yp)—m, the time derivative appears in the form 
iy°d/dt. Thus we have, finally, 

[(VP)-™] G(x-x') = 6W(x-x'\ 

where the symbol <3(4) denotes the product of four ό-functions of the 

t For, on integrating the derivative dG/dt over a small interval of time t around 
we must obtain the difference between the values of G on either side of t — t'\ 

since the integration of the ^-function gives unity, the result is AG, as it should be. 

24 
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four components of the four-vector argument: b\x—x') = b(t— 

Thus the function G(x—x') satisfies an inhomogeneous differential 
equation consisting of Dirac's equation with a δ-function on the 
right-hand side. In mathematical physics, such a function is called a 
Green's function of the corresponding homogeneous equation, in this 
case Dirac's equation. The electron propagator is therefore also fre-
quently called the electron Green's function. 

Similarly, the photon propagator is the Green's function of the 
wave equation satisfied by the electromagnetic field potentials, and so 
it is customarily known also as the photon Green's function. 

§105. Radiative corrections 

The diagram technique allows us, in principle, to calculate not only 
the scattering amplitudes in the first non-vanishing approximation of 
perturbation theory but also the corrections to them in higher approxi-
mations. These are called radiative corrections. 

In the calculation of such corrections, difficulties usually arise be-
cause of the occurrence of divergent integrals. This demonstrates the 
logical incompleteness of the existing quantum electrodynamics. In 
this theory, however, it is possible to establish certain rules which 
allow an unambiguous "subtraction of infinities", and thus to obtain 
finite values for all quantities that have an observable physical signi-
ficance. These rules are based on obvious physical requirements, name-
ly that the photon mass must be zero, and that the electron mass and 
charge must be equal to their observed values. The assignment of 
predetermined values to divergent expressions on the basis of physical 
requirements is called renormalisation of the corresponding quantities. 

The diagrams representing radiative corrections to the scattering 
amplitudes are obtained from the basic diagrams by adding new 
vertices, leaving the number of external lines unchanged. For example, 
a virtual photon line in a diagram may be given an "electron loop" 
with two new vertices (Fig. 20a). The four-vector ρ remains arbitrary, 
and integration must be performed with respect to it; this integral is 
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divergent, and needs to be renormalised. This diagram can be in-
tuitively described as representing the creation from the vacuum of 
a virtual electron-positron pair (with four-momenta ρ and k—p) by 
a virtual photon k9 followed by annihilation of the pair to form the 
same photon as before. Consequently, the radiative corrections per-
taining to diagrams of the type shown in Fig. 20a are referred to as 

- ( k - p ) 

FIG. 20 

the vacuum polarisation effect. This leads, in particular, to a distortion 
of the Coulomb field near a charged particle.1" 

Similarly, by adding two further vertices we can modify a virtual 
electron line as shown in Fig. 20b. The virtual electron ρ can be re-
garded as emitting a virtual photon and then absorbing it again. 

The interaction of an electron with a photon is represented in 
Feynman diagrams by a vertex at which a photon line k meets electron 
lines pl9 p2 (Fig. 21a). The more complicated "diagram section" 

k 

I I 

" Α a / \ 
p 2 p, / \ 

P2 Pi 
FIG. 21 

(Fig. 21b) represents the radiative correction to a simple vertex. This 
correction leads, in particular, to an important result: the magnetic 
moment μ of the electron is no longer strictly equal to the value (93.9) 

t These distortions extend to distances ~ ft/mc, where m is the electron mass. 

24* 

p-k 
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given by Dirac's equation. When the radiative correction is taken 
into account, μ is (in ordinary units) 

where α is the fine-structure constant, a formula first derived by 
J. Schwinger (1949). 

One of the most interesting effects of the radiative corrections is the 
shift of the atomic energy levels called the Lamb shift. This leads, in 
particular, to the removal of the degeneracy of the hydrogen atom 
levels that remains even when Dirac's equation is applied (§94). It is 
impossible to give here a complete analysis of this correction; what 
follows is a simple derivation in terms of non-relativistic theory. 
Although this derivation is not entirely consistent, it will serve to 
illustrate the origin of the radiative corrections.* 

The operator of the interaction between an electron system (say a 
hydrogen atom) and a photon field has no diagonal matrix elements 
(§95). In the first approximation of perturbation theory, therefore, 
this interaction gives no correction to the energy levels of the atom. 
There is a correction in the second approximation, however. Accord-
ing to the general formula (32.10), the second-order correction to the 
energy levels is given by the non-diagonal matrix elements of the 
perturbation that correspond to transitions from a specified state to 
intermediate states. In the present case, we are concerned with states 
of the system consisting of the atom and the photon field; the initial 
state is one in which the atom is at one of its levels (the nth, say) and 
there are no photons. In the intermediate states, the atom can be at 
any of its levels, and the field contains one photon. We can say, in 

§106. Radiative shift of atomic levels 

t This derivation was first given by H. A. Bethe in 1947, and provided the initial 
stimulus for the whole subsequent development of quantum electrodynamics. 
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intuitive terms, that the correction to the energy is due to the emission 
and subsequent absorption of virtual photons by the atom.* 

The matrix elements of the electromagnetic interaction operator 
corresponding to the emission of the photon are, in the non-relativ-
istic case, according to (97.2) and (97.1), 

The summation over intermediate states includes summation over the 
states of the atom (denoted by the suffix m), integration over the 
photon momenta (i.e. over Ω dkx dky dkjtyif), and summation over 
the photon polarisations. The integration over the directions of k and 
the summation over the polarisations are carried out in the same way 
as in the derivation of (97.4), and the resulting correction to the 
energy is 

where En and Em are the unperturbed energy levels of the atom. This 
integral, however, diverges at the upper limit. 

For a free electron, the expression (106.1) would give the correction 
to the mass, and the renormalisation would consist in simply omitting 
it, since the "unperturbed" mass of the electron is its observed value. 
On the other hand, for a free electron the velocity operator ν = p/w 
has only diagonal matrix elements y n n , which coincide with the defi-
nite values of ν for a free particle. The sum over m in (106.1) then 
reduces to the one term m = n: 

The renormalisation constant for an electron that is bound (in an 
atom) is obtained by replacing the squared velocity v 2 by its mean 

t In the non-relativistic theory, the virtualness of the photon is shown by the 
non-conservation of energy when it is emitted or absorbed. There is no production 
of virtual electron-positron pairs in the non-relativistic approximation. 

(106.1) 
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This integral likewise diverges at the upper limit, but only logarith-
mically; in a consistent relativistic theory, no divergence would re-
main, but in the non-relativistic theory a good estimate of δΕη can be 
found by taking the integration in (106.2) from zero to the electron 
mass m, bearing in mind that the non-relativistic treatment is valid 
only for photon frequencies ω <c m and that the value of the loga-
rithmic integral is not greatly dependent on the choice of the upper 
limit if this is large compared with all the differences Em—En between 
energy levels of the atom. 

Lastly, replacing the matrix elements of the electron velocity by 
those of the dipole moment in accordance with (97.1), we have (in 
ordinary units) 

2 TVLC2 

**. = 3 » Σ K U P O ^ - ^ l o g Ί Έ - ^ . (106.3) 

This shift depends on all the electron quantum numbers in the atom 
(the principal quantum number n, the total angular momentum j \ and 
the orbital angular momentum /). After the correction (106.3) is 
applied, therefore, the previously degenerate levels with the same η 
and j but different I =j±\ become distinct.1" 

t For example, at the frequency corresponding to the difference of the levels 
E(2s 1 / 2 ) and E(2pllz\ a numerical calculation from (106.3) gives a value of about 
1000 MHz; the result of the exact relativistic calculation is 1050 MHz. 

value in the relevant state of the atom, i.e. by the matrix element 
<v2)rtw. From the rule of matrix multiplication, we have 

Thus we arrive at the expression 

which must be subtracted from (106.1) in order to obtain the observ-
able correction to the energy level: 

(106.2) 
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annihilation 163, 269, 294, 323 
anticommuting 168 
chronological 347 
commutative 19 

coordinate 23 
creation 164, 269, 294, 323 
electromagnetic interaction 323 
Hermitian 16 

conjugate 16 
linear 15 
momentum 40 
particle density 166 
product of 19 
scattering 348 
self-conjugate 17 
sum of 18-19 
transposed 16 
velocity 70 

Optical theorem for scattering 252 
Orbital angular momentum 137 
Orbital parity 305 
Orbital wave function 159 
Orthogonal functions 17 
Orthohydrogen 214 
Orthonormal functions 18 
Orthopositronium 303 
Oscillation theorem 76 
Oscillator 

linear 81, 120 
three-dimensional 110 

Pair annihilation 299 
Parahydrogen 214 
Parapositronium 303 
Parity 

addition rule 65 
charge 303 
conservation of 63, 307 
internal 305 
orbital 305 
of photon 272-4 
selection rules 64, 332 
of spinor 282 
of a state 63 

Partial amplitude 221 
Particles 293-313 

density operator 166 
Pauli 

equation 318 
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matrices 141 
principle 158 

Periodic system 178-84 
Perturbation theory 116-35 
Phase 

factor 11 
shift 107 
space 93 
of wave 24 

Photons 269,322-44 
angular momentum 271-2 
electric 272 
magnetic 272 
parity 272-4 
propagator 351, 352 
vacuum state 350 
virtual 352 

Planck's constant 25 
Plane wave 69 
Polar vector 64 
Polarisability of atom 191 
Polarisation 

density matrix 148 
of electron 146-9 

Positronium 302, 303 
Potential 

barrier 96 
energy 68 
wall 95 
well 77-81 

Principal groups 181 
Principal quantum number 113, 171 
Probability current density 11 
Propagator 

electron 354 
photon 351, 352 

Pseudoscalar 64 
Pure state 27 

Quadrupole moment 188, 189 
Quantum mechanics 4 

and classical mechanics 5-6, 24-6 
Quantum number 

azimuthal 104 
magnetic 104 

principal 113, 171 
radial 104 
vibrational 212 

Quasi-classical scattering 221-3 
Quasi-classical states 89-94 
Quasi-classical system 25 
Quasi-classical wave function 88 
Quasi-stationary states 134 

Radial function 102 
Radial quantum number 104 
Radiation quanta see Photons 
Radiative corrections 358 
Raman scattering 338 
Rare earths 184 
Rayleigh scattering 338 
Reaction cross-section 251 
Reflection coefficient 96 
Relativistic units 264n 
Renormalisation 358 
Representation 22 

coordinate 22 
dimension of 59n 
Heisenberg 268 
interaction 346 
irreducible 59n, 146n, 277n 
momentum 42, 325, 352 
Schrodinger 267 
standard 289 

Resonance scattering 228 
Rotation group, irreducible representa-

tions of 59n, 146n 
Rotational structure of terms 209-13 
Rotator 212n 
Russell-Saunders case 177 
Rutherford's formula 238 
Rydberg 11 In 

Scalar 
pseudo- 64 
true 64 

Scattering 
amplitude 219, 340 

poles of 224 



368 Index 

Scattering (cont.) 
incoherent 342 
matrix 262, 348 
operator 348 
of particles 218-56 
of radiation 338-42 
of slow particles 225-30 

Schrodinger 
equation 69 

solutions of 72-6 
representation 267 

Second quantisation 161-8, 269, 294 
Secular equation 122 
Selection rules 

for angular momentum 59-62 
for parity 64, 332 
for photon emission 331-2 
for vector matrix elements 61 

Self-conjugate operator 17 
Self-consistent field 171 
Singlet 171n 
S-matrix 262, 348 
Spectral terms 

of atom 170 
of diatomic molecule 197 

Spectrum of eigenvalues 13 
Spherical waves 105 
Spin 137-53 

component 137 
operator 141 
-orbit interaction 174, 319 
-spin interaction 174 
statistical weight 249 
and statistics 300 
variable 137 
wave function 159 

Spinor 144 
field 296 
four-dimensional 277 
inversion of 281-2 
symmetrical 144 

Standard representation 289 
Stark effect 189 
Stationary state 31 
Stationary wave 79 
Statistical weight 249, 328 

Statistics 156, 300 
Stimulated emission 327 
Strictly neutral particles 302 
Strong interactions 307 
Superposition of states 12 
j-wave scattering 224, 225 
Symmetrical wave function 155 
Symmetry of terms 201 

Time reversal 77, 247, 307 
Transition 34 

current 325 
frequency 35 

Transmission coefficient 96 
Transposed operator 16 
Triplet 171n 
Turning points 89 

Uncertainty principle 4 
in the relativistic case 260-3 

Uncertainty relations 43 
for energy 131 

Units 
atomic 111 
relativistic 264n 

Vacuum 
electromagnetic field 268 
electron-positron 354 
energy of the 298 
photon 350 

Valency 202-8 
Van der Waals forces 216 
Vector 

addition coefficients 58 
axial 64 
model 57 
polar 64 

Velocity operator 70 
Vertex of Feynman diagram 352 
Vibrational quantum number 212 
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Vibrational structure of terms 209-13 
Virtual level 230 
Virtual photon 352 
Wave 

equation 29 
function 10 
mechanics 4 
number 93,105 
packet 26 
plane 69 

spherical 105 
stationary 79 

Weak interactions 308 
Width of spectral lines 343-4 

X-ray terms 186 

Zeeman effect 193 
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